Реферат: Общая гидродинамика 2
тогда из (19) получаем следующий закон для вязкой жидкости (М.Навье, 1843 г.; Г.Стокс, 1845 г.):
(20)
Величина называется коэффициентом динамической вязкости, а - коэффициентом второй вязкости. Коэффициент динамической вязкости характеризует внутреннее трение слоев жидкости в их отдельном движении. Смысл этого коэффициента ясно виден на простейшем примере слоистого течения , , , в котором возникает сила трения
Это выражение для силы трения было предложено Ньютоном. На этом основании формулу (20) называют обобщенным законом вязкости Ньютона, а жидкости, удовлетворяющие этому закону, называются ньютоновскими.
Коэффициент характеризует объемную вязкость, действие которой может проявляться только в сжимаемой жидкости.
Коэффициенты , всегда положительны, они могут быть функциями температуры, либо постоянными для данной среды. Наряду с используется коэффициент кинематической вязкости . Значения заметно отличаются от нуля только в особых случаях. В рамках классической гидродинамики эффект второй вязкости обычно не учитывается. Введем обозначение , тогда из (20) получаем следующие уравнения модели вязкой жидкости, связывающие компоненты тензоров напряжений и скоростей деформации:
(21)
Запишем эти уравнения в обычных обозначениях декартовых ортогональных координат:
(22)
Уравнение Навье-Стокса. Если объединить уравнения движения сплошной среды
(23)
с обобщенным законом Ньютона, иначе говоря, если подставить вместо тензора напряжений выражение его через тензор скоростей деформации, то получим уравнение движения, пригодное только для частного класса сред - вязких ньютоновских жидкостей. Получаемое при этом векторное уравнение называется уравнением Навье-Стокса (в скалярной форме - уравнениями Навье-Стокса).
Запишем уравнения Навье-Стокса в декартовой ортогональной системе координат x, y, z. Выражения для компонент тензора напряжений дается формулами (22), выражающими обобщенный закон Ньютона в декартовой системе координат. Подставляя их в уравнение движения, получим
(24)
Если жидкость несжимаемая и = const, то система (24) упрощается, и ее удобно записать в векторной форме
(25)
Уравнения (24), (25) были выведены первоначально на основе представлений о молекулярной структуре среды и о межмолекулярных силах (М.Навье, 1827 г.; С.Д.Пуассон, 1831 г.) На основе феноменологических представлений о линейной связи между тензорами скоростей деформации и напряжений, обобщающих закон Ньютона, эти уравнения вывели Б.Сен-Венан в 1843 г. и Г.Г.Стокс в 1845 г.
Воспользуемся теперь формулами обобщенного закона Ньютона (22) для того, чтобы исключить из уравнения энергии:
(26)
Входящая в это равенство функция называется диссипативной функцией. Очевидно, при .
Уравнение энергии переписывается в следующей эквивалентной форме:
(27)
Задача о стекании слоя вязкой жидкости по наклонной плоскости. Слой жидкости (толщины h) ограничен сверху свободной поверхностью, а снизу неподвижной плоскостью, наклоненной под углом к горизонту. Определить движение жидкости, возникающие под влиянием поля тяжести.
Решение: Выберем неподвижную нижнюю плоскость в качестве плоскости xy, причем ось x выберем по направлению течения. Ось z перпендикулярна плоскости xy и дополняет систему координат до правой ортогональной. Ищется решение, зависящее только от координаты z. Уравнение Навье-Стокса с при наличии гравитационного поля g имеет вид:
На свободной поверхности ( z = h ) должны выполняться условия: