Реферат: Определение момента инерции тела и проверка теоремы Штейнера методом крутильных колебаний
ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ.
Цель работы: изучить метод крутильных колебаний (трифилярный подвес) и применить его для определения момента инерции тела и проверки теоремы Гюйгенса-Штейнера.
Приборы и принадлежности: установка, секундомер, штангенциркуль, линейка, образцы для измерений.
ТЕОРИЯ МЕТОДА И ОПИСАНИЕ УСТАНОВКИ.
Установка для определения момента инерции тела, которая применяется в данной работе, называется трифилярным подвесом. Состоит она из диска (платформы) (рис.1), горизонтально подвешенной на трех симметрично расположенных нитях 2. Вверху нити прикреплены к основанию 3, имеющему три симметрично расположенных выступа. Основание с помощью болта 5 и упругой пластины 6 соединено с кронштейном 4.
Платформа может совершать крутильные колебания вокруг вертикальной оси, проходящей через ее середину. При этом центр тяжести платформы перемещается вдоль оси вращения.
Пусть масса платформы m 0 , вращаясь в некотором направлении, поднялась на высоту h от положения равновесия. Изменение ее потенциальной энергии при этом составит
E 1 = m 0 gh (1)
где g – ускорение силы тяжести.
Возвратившись в положение равновесия, платформа будет иметь угловую скорость w 0 и кинетическая энергия ее будет
E 2 = I (2)
где I – момент инерции платформы относительно оси вращения.
Пренебрегая работой сил трения, закон сохранения механической энергии запишется
I = m 0 gh (3)
При малой амплитуде колебания платформы будут гармоническими, т.е. зависимость углового смещения b от времени t имеют вид
b = a sin (4)
где a - амплитуда;
Т – период колебаний.
В свою очередь угловая скорость w = или w = . Максимальное изменение угловой скорости w 0 , соответствующее моменту времени, когда платформа проходит через положение равновесия
w = (5)
Из (3) и (5) имеем
mgh = I ( ) ² (6)
Найдем h . Пусть l – длина нитей подвеса (рис.2), R – расстояние от центра платформы до точек крепления нитей на ней, r – радиус окружности, на которой лежат точки крепления нитей к основанию.
Из рис.2 видим, что
h = OO 1 = BC - BC 1 =
В свою очередь
Поэтому
При малых углах смещения
; ( BC + BC 1 )=2 l
учитывая это, будем иметь
(7)
тогда из (6) и (7) находим
(8)
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Упражнение 1. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА.
1. Убедиться в том, что платформа расположена горизонтально.
2. Определить R,r,l (масса платформы m 0 =(1.025±0.0005)кг.), R и r удобно определить из известной геометрической формулы, измерив предварительно с помощью линейки расстояние между точками подвеса двух нитей вверху и внизу.
3. Путем несильного нажатия на край основания 3 (рис.1) сообщить платформе вращательный импульс и при помощи секундомера измерить время 50-70 полных ее колебаний. Опыт повторить 3-5 раз.
4. Найти период Т 0 из этих этих колебаний по формуле (8) определить I 0 – момент инерции платформы. Результаты занести в таблицу 1.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--