Реферат: Оптические свойства полупроводниковых пленок в видимой и ИК частях спектра
Согласно (1.16а) коэффициент экстинкции оказывается отличным от нуля, если отлична от нуля мнимая часть диэлектрической проницаемости. Последняя может быть обусловлена как носителями заряда, так и решеткой. В первом случае имеет место поглощение электромагнитной волны, связанное с различными электронными переходами, во втором — поглощение, связанное с передачей энергии непосредственно решетке, т. е. с генерацией только фононов.
Отметим два случая [1].
а. Непоглощающая среда. Пусть σ1 = ε2 = 0. Тогда, согласно (1.16а, б),
χ = 0 и
(1.17)
Это есть формула Максвелла для показателя преломления, дополненная лишь учетом возможной частотной зависимости ε1 '.
б. Слабое поглощение волны достаточно большой частоты. Пусть ω больше плазменной частоты, т. е. ε1 ' > 0. Пусть также
(1.18)
Тогда коэффициент преломления по-прежнему дается формулой (1.17), а коэффициент экстинкции есть
(1.19)
Показатель поглощения равен теперь
(1.20)
Смысл условия (1.18) можно выяснить, вспоминая, что длина электромагнитной волны в среде есть . С помощью этого соотношения и равенств (1.17), (1.20) легко привести условие (1.18) к виду
(1.18')
Иначе говоря, расстояние, на котором волна заметно поглощается, должно быть велико по сравнению с ее длиной.
Условие ε2 ' > 0 и неравенство (1.18') выполняется во многих интересных случаях. При этом вклад свободных носителей заряда в диэлектрическую проницаемость образца обычно невелик, т. е. ε1 ' ≈ ε1 . Небольшим оказывается обычно и решеточное поглощение в рассматриваемой области частот:
ε2 << 1. При этом формулу (1.20) можно переписать в виде (при μ ≈ 1)
(1.20')
На опыте часто измеряют еще коэффициент отражения R. Последний определяется равенством [1]
(1.21)
Здесь Ei — амплитуды волны, падающей на образец, Er —амплитуда отраженной волны. Пользуясь граничными условиями для компонент вектора E на поверхности образца, можно выразить R через коэффициенты преломления и экстинкции п и χ. В случае нормального падения мы имеем
(1.22)
2. Механизмы поглощения
Процессы поглощения света следует классифицировать по тому, на что непосредственно расходуется энергия поглощенных фотонов. Можно выделить следующие механизмы [1]:
1) Решеточное поглощение: электромагнитная волна непосредственно возбуждает колебания решетки. Этот механизм поглощения особенно важен в ионных кристаллах, в которых генерация оптических фононов приводит к заметному изменению вектора поляризации; однако такое поглощение наблюдается и в гомеополярных материалах. Его испытывают волны, частоты которых близки к предельной частоте оптических фононов ω0 . (Обычно это соответствует энергии в несколько сотых долей электронвольта.)
2) Поглощение свободными носителями заряда: энергия расходуется на создание тока высокой (оптической) частоты и, в конечном счете, переходит в джоулево тепло.
3) Примесное поглощение: энергия поглощается носителями заряда, локализованными на примесных или иных структурных дефектах решетки. Она расходуется либо на перевод носителей с основного уровня примесного центра на возбужденный, либо на ионизацию примеси. В последнем случае электроны (дырки) попадают в зону проводимости (валентную), т. е. имеет место внутренний примесный фотоэффект. Таким путем можно определять энергии ионизации ряда примесей.
4) Междузонное поглощение: энергия фотона расходуется на создание пары «электрон проводимости + дырка». В отсутствие сильного электрического поля и/или большой концентрации примеси этот тип поглощения опознается по наличию граничной частоты ωm , близкой к Еg /ћ. При ω < ωm поглощение этого типа отсутствует. Следует, однако, заметить, что вид спектра поглощения вблизи частоты ω = ωm в разных материалах оказывается различным. На рисунке 2.1 представлен спектр поглощения арсенида галлия.