Реферат: Оптические свойства полупроводниковых пленок в видимой и ИК частях спектра

Рисунок 2.1. Спектр поглощения пленки арсенида галлия [1].

Видны два края поглощения. Первый из них приближенно соответствует значению ћωm = Eg (вблизи красной границы коэффициент поглощения очень мал, поэтому поглощение становится заметным при несколько больших частотах), второй отвечает энергии Eg + Δ, где Δ — расстояние между потолком валентной зоны и верхним краем валентной подзоны, отщепленной из-за спин-орбитального взаимодействия.

Примерно такие же (в измененном масштабе частот) кривые получаются и при исследовании многих других материалов — антимонида и арсенида индия, антимонида галлия и др. С другой стороны, у ряда интересных полупроводников частотная зависимость и величина показателя поглощения вблизи красной границы оказываются существенно иными. Так, на рисунке 2.2 изображен ход показатель поглощения света в германии при различных температурах. При ω = ωm (ћωm = Eg = 0,66 эВ при комнатной температуре) показатель поглощения относительно мал; он становится сравнимым с тем, что наблюдается в арсениде галлия, лишь при ћω ~ Eg + 0,1 эВ. Похожая картина (в другом масштабе частот) наблюдается также в кремнии, фосфиде галлия и других материалах. Это различие имеет глубокую физическую природу: оно обусловлено тем, что в материалах первого типа экстремумы зон проводимости и валентной лежат в одной точке зоны Бриллюэна, а в материалах второго типа — в разных.

5) Экситонное поглощение: энергия фотона расходуется на образование экситона.

В материалах первого типа экситонному поглощению отвечают узкие пики α при частотах, несколько меньших ωm ; в материалах второго типа вместо пиков наблюдаются «ступеньки».

Рисунок 2.2. Край поглощения германия при различных температурах [1].

3. Поглощение свободными носителями

Говоря «свободный носитель», мы имеем в виду носитель, который может свободно двигаться внутри зоны и реагировать на внешние воздействия [2]. Поглощение свободными носителями характеризуется монотонным, часто бесструктурным спектром, описываемым законом lp , где l = c/n— длина волны фотона, а р меняется в пределах от 1,5 до 3,5.

При поглощении фотона электрон совершает переход в состояние с большей энергией в пределах той же долины (рисунок 3.1). Такой переход требует дополнительного взаимодействия для того, чтобы выполнялся закон сохранения квазиимпульса.

Рисунок 3.1. Переход свободного электрона в зоне проводимости [2].

Изменение квазиимпульса можно обеспечить либо в результате взаимодействия с решеткой (фононы), либо путем рассеяния на ионизованных примесях.

Согласно теории Друде, описывающей колебания электрона в металле под действием периодического электрического поля, затухание должно увеличиваться пропорционально l2 . В полупроводниках рассеяние акустическими фононами приводит к поглощению, меняющемуся как l1.5 . Рассеяние на оптических фононах дает зависимость l2.5 , тогда как рассеяние ионизованными примесями может дать зависимость l3 или l3.5 , что связано с аппроксимациями, использованными при построении теории [2].

В общем случае реализуются все типы рассеяния и результирующий показатель поглощения af свободными носителями представляет собой сумму трех членов

af = Al1.5 + Bl2.5 + Сl3.5 , (3.1)

где А, В и С — константы. В зависимости от концентрации примесей тот или иной механизм рассеяния будет доминирующим. Показатель р в зависимости lp должен возрастать с увеличением легирования или степени компенсации.

В таблице 3.1 приведены значения р и сечения поглощения af /N для различных соединений [2].

Таблица 3.1. Поглощение свободными носителями в соединениях n-типа.

Соединение Концентрация носителей, 1017 см af /N * , 10-17 см-2 р
GaAs 1-5 3 3
InAs 0,3-8 4,7 3
GaSb 0,5 6 3,5
InSb 1-3 2,3 2
InP 0,4-4 4 2,5
GaP 10 (32) (1,8)
AlSb 0,4—4 15 2
Ge 0,5—5 ~ 4 ~ 2

* Отношение показателя поглощения к концентрации свободных носителей af /N приведено для длины волны 9 мкм. Параметр р определяет зависимость поглощения от длины волны в приближении af ~ lр .

Классическая формула для показателя поглощения свободными носителями af имеет вид


(3.2)

где N — концентрация носителей, п — коэффициент преломления, а t — время релаксации. Отметим, что t учитывает влияние рассеяния. Таким образом, следует ожидать, что вероятность рассеяния ионизованными примесями будет зависеть от природы примеси. Такая зависимость показателя поглощения от химической природы примеси была обнаружена в германии n-типа, где при данной длине волны

af (As) > af (P) > af (Sb),

и в GaAs, где также при фиксированной длине волны

af (S) > af (Se) > af (Te).

Далее, время релаксации зависит от концентрации рассеивающих центров. Поэтому при сильном легировании показатель af не должен быть просто пропорциональным N, как записано в формуле (3.2). На рисунке 3.2 видно, что в германии, легированном сурьмой, показатель af пропорционален N3/2 . Поскольку эффективная масса постоянна в этой области концентраций, то из формулы (3.2) следует, что t пропорционально N‑1/2 .

Рисунок 3.2. Поглощение свободными носителями в Ge (Т = 4,2 К) при 2,4 мкм.


К-во Просмотров: 270
Бесплатно скачать Реферат: Оптические свойства полупроводниковых пленок в видимой и ИК частях спектра