Реферат: Оптимизация профиля отражения частотных фильтров излучения с использованием модулированных сверхрешеток
В рассматриваемом случае поле отраженной волны в анизотропной среде описывается [3] функциями вида:
= ei(kbr - w t) (4)
Аналогичной [3] зависимостью от координат характеризуются поля, возбуждаемые волной (3) в системах однородных плоскопараллельных слоев.
Для таких полей ротор сводится к оператору q x + ikb x и уравнения Максвелла (1) принимают вид
(q x + ikb x )H = -ikD (5)
(q x + ikb x )E = ikB
Умножая уравнения (5) на вектор q , получаем соотношения
qD = aH , qB = -aE , a = b q (6)
При нормальном падении (b = 0) поле (4) представляет собой плоскую волну. Нормальные компоненты векторов электрической и магнитной индукции такой волны равны нулю: qD = qB = 0. Векторы электромагнитного поля в линейной среде связаны уравнениями
D = E , B = mH , (7)
где и m - тензоры диэлектрической и магнитной проницаемостей. В общем случае поглощающей анизотропной среды, обладающей собственной или вынужденной гиротропией [9], и m - комплексные несимметричные тензоры.
Уравнения связи (7) и соотношения (6) образуют систему восьми линейных скалярных уравнений для двенадцати декартовых компонент векторных функций E (z), D (z), H (z), B (z) вида (4). Поэтому лишь четыре из этих компонент линейно независимы. В качестве независимых функций удобно выбрать тангенциальные компоненты векторов напряженности электрического и магнитного полей, так как они непрерывны на границе раздела слоев. Выражая из уравнений (6) и (7) нормальные компоненты через тангенциальные составляющие и используя тождество [3] H = H t +qqH , получаем
= V , где (8)
V = - (9)
матрица восстановления [10] полных векторов H и E по их тангенциальным составляющим H t и E t , а = qq, = qq .
С учетом соотношения (8) систему уравнений (5) можно представить в матричном виде [11]
= ikM , (10)
где
М = (11)
- блочная матрица, составленная из операторов (12)
A = q x qa - bq I
B = II - bb (12)
C = - aa - q x q x
D = - aq q x - Iqb
здесь и - тензоры, взаимные к транспонированным тензорам
и соответственно.
В прозрачных средах и - эрмитовы: , при вещественном параметре b имеют место равенства
B+ = B , C+ = C , D+ = A (13)
В координатной записи уравнение (10) представляет собой систему четырех линейных дифференциальных уравнений для тангенциальных составляющих векторов H и E . Подобная система рассматривалась в [12].