Реферат: Оптимизация профиля отражения частотных фильтров излучения с использованием модулированных сверхрешеток
В нашем случае [7] имеет место
= P , P = , F = (14)
Р – характеристическая матрица плоскослоистой анизотропной системы, которая связывает значения полей на первой и последней границах системы. Для системы из N-1 слоев матрицу Р можно представить в виде
Р = РN-1 PN-2 …PP …P1 , где РР = , р = 1, 2, …,N-1 – характеристическая матрица р-го слоя.
Если в пределах некоторого слоя значения функции М() в двух произвольных точках 1 и 2 коммутируют между собой, то есть
М(1 ) М(2 ) = М(2 )М(1 ) , 1,2 Î [zP-1 , zP ], то матрица Р этого слоя принимает вид [7] P = exp (ik ). Для однородной среды соответствующий интеграл сводится [4] к экспоненциальному оператору
Р = exp (iklM), где l – толщина слоя.
А такое уравнение легко алгоритмизуется. Ниже будет приведен листинг программы с комментариями.
3. Немодулированные бинарные структуры.
Под немодулированными бинарными структурами будем понимать набор из нескольких чередующихся слоев с разными показателями преломления, но с одинаковыми толщинами.
Схематично их можно представить следующим образом:
2 .2 2.2 2.2 2.2 2.2
1.44 1.44 1.44 1.44 1.44 1.44
Рисунок 1. Схематичное представление немодулированных бинарных структур.
Двухслойная немодулированная бинарная структура.
График1. Схематичное изображение оптического пути для двухслойной
немодулированной структуры.
График 2. Зависимости отражения волны для двухслойной
немодулированной структуры при угле падения 00 от частоты.
График 3. Зависимости отражения волны для двухслойной
немодулированной структуры при угле падения 450 от частоты.
Структура же состоящая всего из 4 слоев дает картину, существенно отличающуюся.
График 4. Схематичное изображение оптического пути для четырехслойной
немодулированной структуры.
График 5. Зависимости отражения волны для четырехслойной