Реферат: Основные определения и теоремы к зачету по функциональному анализу

Определение: Элемент наилучшего приближения – L – линейное многообразие, плотное в E. "e"xÎE $u: ║x-u║<e

Теорема: Для любого элемента нормированного пространства существует хотя бы один элемент наилучшего приближения из конечномерного подпространства.

Теорема: Для элемента из строго нормированного конечномерного пространства существует единственный элемент наилучшего приближения из конечномерного подпространства.

Теорема: Рисса о существовании почти ортогонального элемента. E-НП LÌE, "eÎ(0,1) $ze ÎE\L ║ze ║=1 r(ze ,L)>1-e

Определение: Полное нормированное пространство- любая фундаментальная последовательность сходиться.

Теорема: О пополнении нормированного пространства. Любое нормированное пространство можно считать линейным многообразием, плотным в некотором полном нормированном пространстве.

Определение: Гильбертово пространство – нормированное пространство, полное в норме, порожденной скалярным произведением.

Теорема: Для любого элемента гильбертова пространства существует единственный элемент наилучшего приближения в конечномерном подпространстве гильбертова пространства.

Определение: L плотное в E, если "xÎE $uÎL: ║x-u║<e

Теорема: Чтобы L было плотно в H - ортогональное дополнение к L состояло только из нулевого элемента.

Определение: Сепарабельное – нормированное пространство, содержащее некоторое счетное плотное в нем множество.

Определение: Ортогональное дополнение – множество элементов ортогональных к элементам данного пространства.

Определение: Линейный оператор – отображение, для которого A(ax+by)=aAx+bAy

Определение: Непрерывный оператор – Ax-Ax0 при x- x0

Определение: L(X,Y) – пространство линейных операторов

Теорема: Пусть X и Y – полные НП и A – непрерывен на некотором подпространстве пространства X, тогда он непрерывен на всем X.

Определение: Ограниченный оператор - "║x║≤1 $с: ║Ax║≤c

Теорема: A – ограниченный -"xÎX ║Ax║≤c║x║

Теорема: Для того чтобы А был непрерывен - чтобы он была ограничен

Теорема: {An } равномерно ограничена -{An }- ограничена.

Теорема: {An x} – ограниченно - {║An ║}- ограничена.

Определение: Сильная (равномерная) сходимость ║An -A║-0, n-¥, обозначают An -A

Определение: Слабая сходимость - "xÎX ║(An -A)x║Y -0, n-¥

Теорема: Для того, чтобы имела место сильная сходимость -{An } сходилась равномерно на замкнутом шаре радиуса 1

Теорема: Банаха-Штенгауза An -A n-¥ слабо - 1) {║An ║}- ограничена 2) An -A, x’ÌX, x’=x

Теорема: Хана Банаха. A:D(A)-Y, D(A)ÌX -$ A’:X-Y 1) A’x=Ax, xÎD(A) 2) ║A’║=║A║

Определение: Равномерная ограниченность - $a "x: ║x(t)║≤a

Определение: Равностепенная непрерывность "t1 ,t2 $d: ║x(t1 )-x(t2 )║<e

Теорема: L(X,Y) полное, если Y – полное.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 157
Бесплатно скачать Реферат: Основные определения и теоремы к зачету по функциональному анализу