Реферат: Основы оценки сложных систем. Понятия и виды шкал. Отработка характеристик, измеряемых в разных шкалах
Более сложным, чем устойчивость, является помехоустойчивость, понимаемая как способность системы без искажений воспринимать и передавать информационные потоки. Помехоустойчивость объединяет ряд свойств, присущих в основном системам управления. К таким свойствам относятся надежность информационных систем и систем связи, их пропускная способность, возможность эффективного кодирования/декодирования информации, электромагнитная совместимость радиоэлектронных средств и т.д.
Следующим уровнем шкалы качества системы является управляемость способность системы переходить за конечное (заданное) время в требуемое состояние под влиянием управляющих воздействий. Управляемость обеспечивается прежде всего наличием прямой и обратной связи, объединяет такие свойства системы, как гибкость управления, оперативность, точность, производительность, инерционность, связность, наблюдаемость объекта управления и др. На этом уровне качества для сложных систем управляемость включает способность принятия решений по формированию управляющих воздействий.
Следующим уровнем на шкале качеств является способность. Это качество системы, определяющее ее возможности по достижению требуемого результата на основе имеющихся ресурсов в заданный период времени. Данное качество характеризуется такими свойствами, как результативность (производительность, мощность и т.п.), ресурсоемкость и оперативность. Итак, способность - это потенциальная эффективность функционирования системы, способность получить требуемый результат при идеальном способе использования ресурсов и в отсутствие воздействий внешней среды.
Наиболее сложным качеством системы является самоорганизация. Самоорганизующаяся система способна изменять свою структуру, параметры, алгоритмы функционирования, поведение для повышения эффективности. Принципиально важными свойствами этого уровня являются свобода выбора решений, адаптируемость, самообучаемость, способность к распознаванию ситуаций.
Введение уровней качества позволяет ограничить исследования одним из перечисленных уровней. Для простых систем часто ограничиваются исследованием устойчивости. Уровень качества выбирает исследователь в зависимости от сложности системы, целей исследования, наличия информации, условий применения системы.
IV. Методы качественного и количественного оценивания систем
Методы оценивания систем разделяются на качественные и количественные.
Качественные методы используются на начальных этапах моделирования, если реальная система не может быть выражена в количественных характеристиках, отсутствуют описания закономерностей систем в виде аналитических зависимостей. В результате такого моделирования разрабатывается концептуальная модель системы.
Простейшей формой задачи оценивания является обычная задача измерения, когда оценивание есть сравнение с эталоном, а решение задачи находится подсчетом числа эталонных единиц в измеряемом объекте. Например, пусть х - отрезок, длину которого надо измерить. В этом случае отрезку сопоставляется действительное число ф (х) - его длина.
Более сложные задачи оценивания разделяются на задачи: парного сравнения, ранжирования, классификации, численной оценки.
Задача парного сравнения заключается в выявлении лучшего из двух имеющихся объектов. Задача ранжирования - в упорядочении объектов, образующих систему, по убыванию (возрастанию) значения некоторого признака. Задача классификации - в отнесении заданного элемента к одному из подмножеств. Задача численной оценки - в сопоставлении системе одного или нескольких чисел.
Перечисленные задачи могут быть решены непосредственно лицом, принимающим решение, или с помощью экспертов - специалистов в исследуемой области. Во втором случае решение задачи оценивания называется экспертизой.
Качественные методы измерения и оценивания характеристик систем, используемые в системном анализе, достаточно многочисленны и разнообразны.
К основным методам качественного оценивания систем относят:
* методы типа мозговой атаки или коллективной генерации идей;
типа сценариев;
* экспертных оценок;
* типа Дельфи;
* типа дерева целей;
* морфологические методы.
Количественные методы используются на последующих этапах моделирования для количественного анализа вариантов системы.
Наличие неоднородных связей между отдельными показателями сложных систем приводит к проблеме корректности критерия превосходства к необходимости идти на компромисс и выбирать для каждой характеристики не оптимальное значение, а меньшее, но такое, при котором и другие показатели тоже будут иметь приемлемые значения.
Для решения проблемы корректности критерия превосходства были разработаны методы количественной оценки систем:
* методы теории полезности;
* методы векторной оптимизации;
* методы ситуационного управления, инженерии знаний.
Методы теории полезности основаны на аксиоматическом использовании отношения предпочтения множества векторных оценок систем.
Методы векторной оптимизации базируются на эвристическом использовании понятия векторного критерия качества систем (многокритериальные задачи) и включают методы главного критерия, лексикографической оптимизации, последовательных уступок, скаляризации, человеко-машинные и другие методы. При решении задач векторной оптимизации векторный (многокомпонентный) критерий эффективности, выраженный через показатели исходов операции, заменяют скалярным на основе какой-либо функции свертки.
Методы ситуационного управления, инженерии знаний основаны на построении семиотических моделей оценки систем. В таких моделях система предпочтений ЛПР формализуется в виде набора логических правил, по которым может быть осуществлен выбор альтернатив. При этом понятие векторного критерия в явном виде не используется.