Реферат: Основы построения систем. Способы передачи и анализ телемеханических сигналов
т.е.
где:- произвольные векторы из пространства X ; произвольные скалярные величины.
Множество всех линейных преобразований некоторого линейного пространства само является линейным пространством, в котором определены векторное сложение и умножение на скаляр:
для всех х X .
Операция сложения схемно легко реализуется в виде параллельного соединения, а умножение — последовательным соединением соответствующих блоков, выражающих указанные операторы.
Линейные коды с избыточностью (корректирующие коды) строятся добавлением к каждой m -значной комбинации исходного кода k проверочных символов, выбираемых по определенному правилу (линейной форме).
Комбинации корректирующих кодов в общем виде записываются следующим образом:
где:- информационные символы 1-й комбинации исходного кода;
— проверочные символы.
Коэффициенты могут иметь значения 0 и 1, суммирование проводится по модулю 2.
Корректирующие возможности кода зависят от кодового расстояния, косвенно отражаемого в форме общей записи числом проверочных символов. В табл 1 приведена система кодовых слов при минимальном для помехозащищенных кодов расстоянии d = 2.
Таблица.1
0 | 0 | 0 | 0 | 1 | 0 |
0 |
1 | ||
0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | ||
0 | 1 | 0 | 1 | 1 | 1 |
0 |
0 | ||
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
Разряд является проверочным на четность по правилу .
Из примера видно, что появление ошибки в любом разряде может быть обнаружено, так как возникает комбинация не из набора разрешенных. Добавляя проверочные разряды, можно поучитьмножество комбинаций с кодовым расстоянием d > 2, что позволяет не только обнаруживать ошибки, но и исправлять их (корректировать).
Например, множество кодовых слов с d =3 (табл. 2.2) обладаетвозможностью обнаруживать и исправлять ошибку в одном разряде или же только обнаруживать ошибки в двух разрядах.
Разряды
;
;
являются проверочными на четность.
Таблица 2
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | ||
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | ||
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | ||
0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | ||
0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | ||
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | ||
0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | ||
0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |