Реферат: Особенности практического применения способов кодирования. Способы декодирования с обнаружением ошибок
Задача кодирования заключается в формировании по информационным словам a(x) кодовых слов (x) циклического (n,k)-кода, который по своей структуре может быть несистематическим и систематическим.
Формирование кодовых слов несистематического кода заключается в умножении многочлена a(x), отображающего информационную последовательность длины k, на порождающий многочлен, т.е. (x)=a(x)(g(x). Формирование кодовых слов систематического кода заключается в преобразовании информационной последовательности a(x) в соответствии с выражением (x)=a(x)xr +r(x).
Проверочная последовательность r(x) определяется двумя способами:
при использовании "классического" способа кодирования ;
при использовании способа кодирования, рекомендованного МККТТ ,
где x(1)r-1 - единичный многочлен степени (r-1).
Указанные выше математические операции выполняют кодеры несистематического и систематического кодов.
Способы декодирования с обнаружением ошибок
Процедура декодирования циклического кода с обнаружением ошибок, по аналогии с процессом кодирования, использует два способа:
- при кодировании "классическим" способом декодирование основано на использовании свойства делимости без остатка кодового многочлена (x) циклического (n,k)-кода на порождающий многочлен g(x). Поэтому алгоритм декодирования включает в себя деление принятого кодового слова, описываемого многочленом на g(x), вычисление и анализ остатка r(x). Если r(x)=0, то принятое кодовое слово считается неискаженным. Если r(x)0, то принятое кодовое слово стирается и формируется сигнал "ошибка".
- при кодировании способом МККТТ декодирование основано на свойстве получения определенного контрольного остатка R0 (x) при делении принятого кодового многочлена (x) на порождающий многочлен. Поэтому, если полученный при делении остаток , то принятое кодовое слово считается неискаженным. Если остаток , то принятое кодовое слово стирается и формируется сигнал "ошибка". Значение контрольного остатка определяется из выражения .
Способы декодирования с исправлением ошибок и схемная реализация декодирующих устройств
Декодирование циклического кода в режиме исправления ошибок можно осуществлять различными способами. Ниже излагаются два способа, являющиеся наиболее простыми.
В основу первого способа положено использование таблицы синдромов (декодирования), в которой каждому многочлену или образцу ошибок ei (x), соответствует определенный синдром Si (x), представляющий остаток от деления принятого кодового слова и соответствующего ему ei (x) на g(x). Процедура декодирования следующая. Принятое кодовое слово делится на g(x), определяется Si (x) и соответствующий ему многочлен ei (x), а затем суммируется с ei (x). В результате получаем исправленное кодовое слово, т.е. .
В состав декодера входят: вычислитель синдрома (ВС), два регистра сдвига RG1 и RG2, постоянное запоминающее устройство (ПЗУ), которое содержит слова длины n, соответствующие многочленам ошибок ei (x).
Принятое кодовое слово поступает на вход вычислителя синдрома, где осуществляется деление его на g(x) и формирование Si (x), и одновременно - на вход RG2, где накапливается. Синдром Si (x) используется в качестве адреса, по которому из ПЗУ в регистр RG1 записывается ei (x), соответствующий синдрому Si (x). Перечисленные операции завершаются за n тактов. В течение последующих n тактов происходит поэлементное суммирование содержимого RG2 и RG1, т.е. операция , и исправление. ошибок.
В основе второго способа исправления ошибок, позволяющего значительно сократить объем используемых табличных синдромов и существенно упростить схему декодера, лежат следующие положения:
1. Синдром Si (x), соответствующий принятому кодовому слову равен остатку от деления на g(x), а также остатку от деления соответствующего многочлена ошибок ei(x) на g(x), т.е. .
2. Если Si (x) соответствует и ei (x), то x( Si (x) является синдромом, который соответствует и или .
3. При исправлении ошибок используются синдромы образцов ошибок только с ненулевым коэффициентом в старшем разряде.
Поэтому при реализации этого способа множество всех образцов ошибок разбивается на классы эквивалентности. Каждый класс представляет циклический сдвиг одного образца ошибок, а синдром этого класса соответствует образцу ошибок с ненулевым старшим разрядом. Если вычисленный синдром принадлежит одному из классов эквивалентности образцов исправляемых ошибок, то старший символ кодового слова исправляется. Затем принятое слово и синдром циклически сдвигается, а процесс нахождения в предыдущей по старшинству позиции повторяется.
Для исправления ошибок, принадлежащих данному классу эквивалентности, нужно произвести n циклических сдвигов.
Простейшим является декодер Меггитта. В состав декодера входят: вычислитель синдрома, осуществляющий деление кодового слова на g(x) и формирование соответствующего синдрома; блок декодеров (ДК), который настроен на синдромы всех образцов исправляемых ошибок с ненулевыми старшими разрядами; регистр сдвига RG.
При поступлении на вход схемы кодового слова его символы заполняют регистр RG, а в вычислителе формируется соответствующий синдром Si (x). Вычисленный синдром сравнивается со всеми табличными синдромами, заложенными в схему блока ДК, и в случае совпадения с одним из них на его выходе формируется сигнал, который исправляет ошибочный символ, находящийся в старшем разряде регистра. После этого содержимое вычислителя и RG циклически сдвигается на один шаг. Этот сдвиг реализует операции и . Если новый синдром совпадает с одним из табличных синдромов, то это означает, что произошла ошибка во втором по старшинству символе кодового слова, который, перейдя в старший разряд RG, исправляется. Затем производится новый циклический сдвиг на одну позицию и новая проверка на совпадение синдромов. После повторения этого процесса n раз в RG будет сформировано исправленное кодовое слово. Введение обратной связи для RG не обязательно, так как в процессе исправления ошибок символы кодового слова поступают на выход декодера.
Пример. Рассмотрим схему и работу декодера Меггитта циклического (15,7)-кода, обеспечивающего исправление одиночных и двойных ошибок, с g(x)=x8 + x7 + x6 + x4 +1 (см. рисунок 1).
Блок декодеров настраивается на 15 синдромов, которые представлены в таблице 1 и соответствуют классам эквивалентности с образцами ошибок в старшем разряде.
Таблица 1 | |||||
№ | |||||
е(х) | S(x) | № | е(х) | S(x) | |
1 | x14 | x7 + x6 +x5 + x3 | 9 | x14 + x6 | |
2 | x14 + x13 | x7 + x4 +x3 + x2 | 10 | x14 + x5 | x7 + x6 +x3 |
3 | x14 + x12 | x7 + x6 +x4 + x | 11 | x14 + x4 | x7 + x6 +x5 + x4 +x3 |
4 | x14 + x11 | 12 | x14 + x3 | x7 + x6 +x5 | |
5 | x14 + x10 | 13 | x14 + x2 | x7 + x6 +x5 + x3 +x2 | |
6 | x14 + x9 | 14 | x14 + x1 | x7 + x6 +x5 + x3 +x | |
7 | x14 + x8 | 15 | x14 + x0 | x7 + x6 +x5 + x3 +0 | |
8 | x14 + x7 |
Допустим, что ошибки в 3 и 5 разрядах, т.е. им соответствует многочлен ошибки e(x)=x12 +x10 .
При поступлении на вход декодера искаженного кодового слова он заполняет регистр и в вычислителе формируется синдром .
Блок декодеров не реагирует на этот синдром.
Затем происходит сдвиг кодового слова в RG, а в BC формируется новый синдром .
Блок декодеров и в этом случае не срабатывает.
При следующем сдвиге кодового слова в RG первый искаженный разряд занимает старшую позицию в RG, а в BC формируется синдром , от которого срабатывает БДК. В результате исправляется первая ошибка.
Следующим сдвиг приводит к формированию синдрома .
Этот синдром соответствует многочлену ошибки e(x)=x13 +x0 , т.к. первый искаженный разряд по обратной связи должен занять младшую позицию RG.
На синдром S(13,0) блок декодеров не реагирует.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--