Реферат: Оценивание параметров и проверка гипотез о нормальном распределении

Таблицы Для вычисления вероятности нормальной кривой распределения

Интервалы Mi T1 T2 1/2Ф(T1) 1/2Ф(T2) Pi
a(i) b(i)
730,644 735,356 2 -2,640 -2,051 0,4958 0,4798 -0,0080
735,356 740,068 8 -2,051 -1,461 0,4798 0,4279 -0,0260
740,068 744,780 6 -1,461 -0,872 0,4279 0,3078 -0,0601
744,780 749,492 18 -0,872 -0,283 0,3078 1,1103 0,4013
749,492 754,204 35 -0,283 0,306 0,0300 0,6619 0,3160
754,204 758,916 12 0,306 0,896 0,1179 0,3133 0,0977
758,916 763,628 11 0,896 1,485 0,3133 0,4306 0,0587
763,628 768,340 6 1,485 2,074 0,4306 0,4808 0,0251
768,340 773,052 2 2,074 2,664 0,4808 0,4960 0,0076
Pi*n Mi(теор) Mi(теор)/h Mi(теор)накоп
-0,8000 1 0,002 0,0080
-2,5950 3 0,006 0,0340
-6,0050 6 0,013 0,0940
40,1250 40 0,085 0,4953
31,5950 32 0,068 0,8153
9,7700 10 0,021 0,9130
5,8650 6 0,012 0,9716
2,5100 3 0,005 0,9967
0,7600 1 0,002 1,0000
100

Сравнение гистограммы и нормальной кривой наглядно показывает согласованность между теоретическим и эмпирическим распределением.

Примечание: Построенные графики находятся в приложениях к работе.

6* Проверить гипотезу о нормальном законе распределения по критерию согласи яПирсона f^2).

Проверка гипотез о нормальном законе распределения

Частоты для проверки соответствия эмпирического ряда распределения нормальному закону используют критерий X^2, основанный на сравнении эмпирических частот mi с теоретическими m^тi, которые можно ожидать при принятии определенной нулевой гипотезы.

Значение X^2набл. – наблюдаемое значение критерия, полученное по результатам наблюдений, равно

к

F^2набл.= (mi-m^тi)

I=1 m^i

Где к – число интервалов (после объединения). M^i – теоретические частоты. Все вспомогательные расчеты, необходимые для вычисления f^2, сведем в таблицу 1.6.

Таблица 1.6.

Вычисление критерия X^2 при проверке нормальности продолжительности горения электролампочек

Интервалы Mi(Практ) Mi(теор) (Mi-Mi(теор))^2 …../Mi(теор)
a(i) b(i)
730,644 735,356 2 2 9 1,29
735,356 740,068 8 5
740,068 744,780 6 13 49 3,88
744,780 749,492 18 21 9 0,43
749,492 754,204 35 25 100 4,01
754,204 758,916 12 21 81 3,89
758,916 763,628 11 12 1 0,08
763,628 768,340 6 5 1 0,14
768,340 773,052 2 2
X^2набл 13,71

Правило проверки гипотезы заключается в следующем. Определяем по таблице распределения xu - квадрат критическое значение X^2кр.(альфа для числа степеной свободы V =к-3 и заданного уровня значимости альфа. Затем сравниваем X^2кр.

Если X^2 набл.<=X^2кр. , то выдвинутая гипотеза о законе распределения не отвергается (не противоречит опытным данным).

Если X^2 набл. >X^2кр. , то выдвинутая гипотеза о нормальном законе распределения отвергается с вероятностью ошибки a.

Для нашего примера X^2набл.=13,71, a=0,005, V=7-3=4 (число интервалов после объединения стало равным 7) и X^2кр. (0,005; 4) =14,9

Так как X^2набл.<X^2кр., то согласно критерию Пирсона гипотеза о нормальном законе не отвергается с вероятностью ошибки 0,005. Можно сделать вывод, что распределение продолжительности горения электролампочек является нормальным. Что подтверждают графики и значения моды и медианы.

К-во Просмотров: 347
Бесплатно скачать Реферат: Оценивание параметров и проверка гипотез о нормальном распределении