Реферат: Оценка систем дистанционного образования (математическая модель)
(3а)
Каждый элемент матрицы (3а) соответствует среднему числу раз попадания системы в то или иное состояние до остановки процесса (поглощения).
Если необходимо получить общее среднее количество раз попадания системы в то или иное состояние до поглощения, то фундаментальную матрицу М необходимо умножить справа на вектор-столбец, элементами которого будут единицы, то есть
(4а)
где .
Для иллюстрации приведем конкретный числовой пример: пусть известны значения переходных вероятностей матрицы с одним поглощающим состоянием: ; ; ; ; ; ; ; .
Переходная матрица в блочной системе будет выглядеть так:
В данном случае
; ; ;
Проделаем необходимые вычисления:
;
;
.
В данном случае компоненты вектора означают, что если процесс начинается с состояния , то общее среднее число шагов процесса до поглощения будет равно 3,34 и, соответственно, если процесс начинается с состояния , то - 2,26.
В конкретных задачах, конечно, более информативным результатом будет не количество шагов, а какие-либо временные или экономические показатели. Этот результат легко получить, если связать пребывание в каждом состоянии с соответствующими характеристиками. Очевидно, набор этих характеристик составит вектор, на который нужно умножить слева.
Так, если задать в нашем примере время пребывания в состоянии , а в состоянии - , то общее время до поглощения будет равно:
В случаях, когда марковская цепь включает несколько поглощающих состояний, возникают такие вопросы: в какое из поглощающих состояний цепь попадет раньше (или позже); в каких из них процесс будет останавливаться чаще, а в каких - реже? Оказывается, ответ на эти вопросы легко получить, если снова воспользоваться фундаментальной матрицей.
Обозначим через вероятность того, что процесс завершится в некотором поглощающем состоянии при условии, что начальным было состояние . Множество состояний снова образует матрицу, строки которой соответствуют невозвратным состояниям, а столбцы - всем поглощающим состояниям. В теории ДМЦ доказывается, что матрица В определяется следующим образом:
(4.б)
где
М - фундаментальная матрица с размерностью S;
R - блок фундаментальной матрицы с размерностью r.
Рассмотрим конкретный пример системы с четырьмя состояниями , два из которых- - поглощающие, а два - - невозвратные (рис.10):
Система с четырьмя состояниями
Для наглядности и простоты вычислений обозначим переходные вероятности следующим образом:
; ;