Реферат: Оцінювання параметрів розподілів

(3)

Для визначення оцінок параметрів і , тобто визначення і замінимо в рівняннях (2) і (3) і їхніми оцінками і (1),(2). Одержимо систему рівнянь для точкових оцінок , , звідки знаходимо:

.

Відомо, що метод моментів при досить загальних умовах дозволяє знайти оцінки, для яких виконується вимога асимптотичної ефективності. Однак, як доведено Фішером, отримані цим методом оцінки з погляду їхньої ефективності не є найкращими з можливих, тобто при великих вибірках вони мають не найменшу можливу дисперсію. Тому отримані цим методом оцінки слід роз­глядати лише як перше наближення.

Метод максимальної правдоподібності. Найбільш поширеним методом точкового оцінювання є метод максимальної правдоподібності (Фішера). Оцінки, отримані цим методом при досить великих вибірках, звичайно задовольняють усім перерахованим вище вимогам обґрунтованості, незміщеності та ефективності.

Сутність цього методу полягає у наступному. Нехай дана вибірка обсягу з генеральної сукупності з неперервно розподіленою випадковою величиною . Нехай щільність ймовірності має вигляд , тобто містить невідомий параметр , який треба оцінити за вибіркою.

Функцією правдоподібності називають функцію параметра , що визначається формулою:

. (4)

У разі дискретної випадкової величини з можливими значеннями та ймовірностями позначимо через найбільше з можливих значень, що зустрічається у вибірці, а через ­ абсолютні частоти, з якими з'являються значення , ,... у вибірці . У цьому випадку функцією правдоподібності називають функцію параметра , що задана співвідношенням

. (5)

Метод найбільшої правдоподібності полягає в тому, що за оцінку параметра береться таке його значення, при якому функція правдоподібності досягає свого максимуму.

Параметр знаходять, розв’язуючи відносно нього рівняння


. (6)

Часто для зручності функцію правдоподібності заміняють її логарифмом і замість (6) розв’язують рівняння вигляду

, . (7)

Якщо щільність ймовірності або ймовірність можливого значення залежать від параметрів, то найбільш правдоподібну оцінку системи параметрів одержують під час розв’язання системи рівнянь

(8)

або

. (9)

Найбільш правдоподібні оцінки при досить загальних умовах мають такі важливі властивості:

– вони є обґрунтованими,

– асимптотично нормально розподіленими, однак не завжди незміщеними,

– серед усіх асимптотично нормально розподілених оцінок вони мають найбільшу ефективність.

Має місце також наступне положення: якщо взагалі є ефективна оцінка, її можна отримати методом найбільшої правдоподібності.

3. Інтервальне оцінювання параметрів

Інтервальною називають оцінку, що визначається двома числами – кінцями інтервалу. Інтервальні оцінки дозволяють визначити точність і надійність точкових оцінок.

Надійністю (довірчою ймовірністю) оцінки невідомого параметра за допомогою знайденої за даними вибірки статистичної характеристики називають ймовірність , з якою виконується нерівність :

чи, що те ж саме

К-во Просмотров: 230
Бесплатно скачать Реферат: Оцінювання параметрів розподілів