Реферат: Параметри тунельного ефекту
Мал. 3.2 Тунелювання при наявності зовнішнього поля
Рівень Фермі першого зерна зміщається щодо рівня Ферми другого на величину, де u – прикладена напруга. Отже, проти заповнених рівнів першого зерна виявляться порожні рівні другого зерна. Електрони почнуть переходити з першого зерна в друге. Потече електричний струм, щільність якого залежить від напруженості поля. В області сильних полів, коли величина прикладеного поля значно більше значення суми роботи виходу й рівня Фермі, струм експоненціально залежить від величини, зворотної діючому полю. Помітимо, що тунельний струм квадратично залежить від температури.
У металевих плівках дискретної структури може бути ще один тунельний механізм переносу носіїв. Це – так зване активоване тунелювання: носії заряду, термічно збуджені наделектростатичним потенційним бар'єром, тунелюють від однієї нейтральної частки до іншої. У слабких полях провідність, обумовлена цим механізмом, підкоряється закону Ома й експоненціально залежить від зворотної температури, розмірів зерен і відстані між ними. В області сильних полів відбувається відхилення від закону Ома, яке сильно залежить від температури й пропорційно .
Розглянуті механізми ставилися до переносу носіїв через вільний простір між зернами. Однак висота потенційного бар'єра при тунелюванні через вакуум близька до роботи виходу металу, а при тунелюванні через діелектрик вона багато менше й рівна різниці робіт виходу металу й електронної спорідненості діелектрика. Зниження висоти бар'єра підвищує ймовірність туннелирования. Крім того, через велику діелектричну проникність підкладки енергія активації менше, чим у вакуумі. Таким чином, тунельний струм через підкладку повинен бути значним. Провідність через підкладку здійснюється або прямим тунелюванням, або тунелюванням через стабільні енергетичні домішкові стани й пастки.
4 ТУНЕЛЬНИЙ ПРОБІЙ В p-n переході
Пробоєм називають різке збільшення струму через перехід в області зворотних напруг, що перевищують напругу, називане напругою пробою.
Тунельний пробій пов'язаний з тунельним ефектом – переходом електронів крізь потенційний бар'єр без зміни енергії. Тунельний пробій спостерігається тільки при дуже малій товщині бар'єра – порядку 10 нм, тобто в переходах між сильно легованими p- і n- областями (порядку 1018 див-3 ). На мал.4.1 показана енергетична діаграма p-n-переходу при зворотній напрузі, стрілкою позначений напрямок тунельного переходу електрона з валентної зони p-області в зону провідності n-області.
Мал. 4.1 Енергетична діаграма p-n переходу при зворотній напрузі.
Еп – дно зони провідності; Еф – рівень Ферми; Ев – потовк валентної зони.
Електрон тунелює із крапки 1 у крапку 2, він проходить під енергетичним бар'єром трикутної форми (заштрихований трикутник з вершинами 1-3), енергія електрона при цьому не змінюється.
Тунельні переходи можливі для електронів, енергія яких відповідає інтервалу тунелювання ΔЕтун, у якім по обидві сторони розташовані дозволені рівні енергії. Висота бар'єра рівна ΔЕз, вона, як правило, менше висоти p-n переходу, рівноїq(φ0 +|U|).Товщина бар'єра з ростом зворотної напруги зменшується, що підвищує ймовірність туннелирования. Тунельний струм різко збільшується, тому що зростає інтервал туннелирования й число електронів у ньому. Тунельний пробій у чистому видіпроявляється тільки привисоких концентраціях домішок (більш ), а напруга пробою становить 0-5 В. При підвищенні температури ширина забороненої зони незначно зменшується й напруга пробою знижується. Таким чином, температурний коефіцієнт напруги тунельного пробою негативний.
5. ТУНЕЛЬНИЙ ДІОД
Запропонований в 1958 р. японським ученим Л. Йосаки тунельний діод виготовляється з германію або арсеніду галію з високою концентрацією домішок (1019 — 1020 см-3 ), тобто з дуже малим питомим опором, у сотні або тисячі раз меншим, чим у звичайних діодах. Такі напівпровідники з малим опором називають виродженними. Електронно-дірочний перехід у виродженому напівпровіднику виходить у десятки раз тонше (10-6 см), чому у звичайних діодах, а потенційний бар'єр приблизноу два рази вище. У звичайних напівпровідникових діодах висота потенційного бар'єра рівна приблизно половині ширини забороненої зони, а в тунельних діодах вона трохи більше цієї ширини. Внаслідок малої товщини переходу напруженість поля в ньому навіть при відсутності зовнішньої напруги досягає 106 В/см.
Процеси в тунельному діоді зручно розглядати на енергетичних діаграмах, рівні, що показують, енергії валентної зони й зони- провідності в n- і р- областях. Внаслідок виникнення контактної різниці потенціалів в n-р переході границі всіх зон в одній з областей зрушені щодо відповідних зон іншої області на висоту потенційного бар'єра, виражену в електрон-вольтах.
На мал.3.1-3.4 за допомогою енергетичних діаграм зображене виникнення тунельних струмів в електронно-дірочному переході тунельного діода. Для того щоб не ускладнювати розгляд тунельного ефекту, дифузійний струм і струм провідності на цьому малюнку не показані. Діаграма мал. 3.1 відповідає відсутності зовнішньої напруги. Висота потенційного бар'єра взято для прикладу 0,8 еВ, а ширина забороненої зони становить 0,6 еВ.
Мал. 3.1 Діаграма тунельного діода при відсутності зовнішньої напруги.
Горизонтальними лініями в зоні провідності й у валентній зоні показані енергетичні рівні, повністю або частково зайняті електронами. У валентній зоні й зоні провідності зображені також не заштриховані горизонтальними лініями ділянки, які відповідають рівням енергії, не зайнятим електронами. Як видне, у зоні провідності напівпровідника n- типу й у валентній зоні напівпровідника р-типу є зайняті електронами рівні, відповідні до однакових енергій. Тому може відбуватися тунельний перехід електронів з області n в область р (прямій тунельний струм iпр ) і з області р в область n (зворотний тунельний струм iобр ). Ці два токи однакові за значенням струм, що й результуючий, дорівнює нулю.
На мал. 3.2 показана діаграма при прямій напрузі 0,1 В, за рахунок якого висота потенційного бар'єра понизилася на 0,1 еВ і становить 0,7 еВ. У цьому випадку тунельний перехід електронів з області n в область р підсилюється, тому що в області р є у валентній зоні вільні рівні, що відповідають таким же енергіям, як енергії рівнів, зайнятих електронами в зоні провідності області n. А перехід електронів з валентної зони області р в область n неможливий, тому що рівні, зайняті електронами у валентній зоні області р, відповідають в області n енергетичним рівням забороненої - зони. Зворотний тунельний струм відсутній, що й результуючий тунельний струм досягає максимуму. У проміжних випадках, наприклад коли Uпр =0,05В, існують і прямій і зворотний тунельний струми, але зворотний струм менше прямого. Результуючим буде прямий струм, але він менше максимального, що виходить при Uпр = 0,1 В.
Мал. 3.2 Енергетична діаграма тунельного діода при Uпр =0,1 В
Випадок, показаний на мал. 3.3 відповідає Uпр = 0,2 В, коли висота потенційного бар'єра стала 0,6 еВ. При цьому напрузі тунельний перехід неможливий, тому що рівням, зайнятим електронами в даній області, відповідають в іншій області енергетичні рівні, що перебувають у забороненій зоні. Тунельний струм дорівнює нулю. Він отсутствует також і при більшій прямій напрузі. Слід пам'ятати, що при зростанні прямої напруги збільшується прямий дифузійний струм діода. При розглянутих значеннях Uпр = 0,2 В дифузійний струм набагато менше тунельного струму, а при Uпр >0,2 В дифузійний струм зростає й досягає значень, характерних для прямого струму звичайного діода.
Мал . 3.3 Енергетична діаграма тунельного діода при Uпр =0,2 В
На мал. 3.4 розглянутий випадок, коли зворотна напруга Uобр =0,2В. Висота потенційного бар'єра стала 1 еВ, і значно збільшилося число рівнів,зайнятих електронами у валентній зоні р- області й відповідають їхнім вільним рівням у зоні провідності n-області. Тому різко зростає зворотний тунельний струм, який виходить такого ж порядку, як і струм при прямій напрузі.
Вольт-амперна характеристика тунельного діода (мал. 3.5) пояснює розглянуті діаграми. Як видне, при U=0 струм дорівнює нулю. Збільшення прямої напруги до 0,1 В дає зростання прямого тунельного струму до максимуму (крапка А). Подальше збільшення прямої напруги до 0,2 В супроводжується зменшенням тунельного струму. Тому в крапці Б виходить мінімум струму й характеристика має падаючу ділянкуАБ, для якого характерно негативний опір змінному струму:
(3.1)
Мал. 3.4 Енергетична діаграма тунельного діода при Uобр =0,2 В.