Реферат: Передаточное отношение многоступенчатых передач

В простой зубчатой передаче, состоящей из двух находящихся в зацеплении колес, при внешнем зацеплении колеса вращаются в разные стороны, поэтому передаточное отношение (3.6) отрицательное, а в передаче с внутренним зацеплением передаточное отношение положительное, т.е.

i12 = ω12 = ±z2 /z1 , (1)

где знак «–» принимают при внешнем зацеплении колес, знак «+» – при внутреннем.

Рис. 1
б
а
???????????? ?????????, ??????? ????? ????????????? ????? ????? ???????? ????? (???????? ????????? ????????) ????????, ??? ??? ??????????? ? ???????????? ???????? ????? ?????? ????? ?????????? ? ???????????? ????????????? ???????????????? ?????????. ??? ????????????? ????????? ??????? ???????????? ????????? ????????? ??????? ???????? ?????????, ????????? ?? ?????????? ??????? ??????????????, ??????????, ????????? ???????? ??????????, ???????????

последовательно, т.е. применяют многоступенчатую передачу. Передача вращающего момента осуществляется последовательно с одного вала на другой через зубчатые колеса, причем на каждом промежуточном валу размещают по два колеса, одно из которых является ведомым по отношению к предыдущему, другое – ведущим по отношению к последующему.

Рассмотрим плоский ступенчатый зубчатый механизм (рис. 1, а), представляющий собой последовательное соединение нескольких простых механизмов. На каждом промежуточном валу находится не менее двух колес, зацепляющихся соответственно с колесами предыдущего и последующего валов. Ведущим является колесо 1, общее передаточное отношение всего механизма i1n = ω1/ωn, где ω1, ωn – соответственно скорости вращения ведущего и выходного n-го звена. Выразим, пользуясь зависимостью, передаточные отношения простых механизмов, состоящих из одной пары колес, находящихся в зацеплении i12 = ω12 = –z2 /z1 ; i23 = ω23 = –z3 /z2' и т.д. Перемножим полученные соотношения i12 ∙i23 ∙…∙i(n–1)n = (ω12 )∙(ω2 /ω3)∙…´
´ (ωn–1/ωn) = ω1/ωn, но ω1/ωn = i1n, поэтому

i1n = i12∙i23 ∙…∙i(n–1)n, (2)

т.е. передаточное отношение многоступенчатой передачи равно произведению передаточных отношений всех простых зубчатых передач, входящих в механизм. Зависимость можно выразить через числа зубьев колес. Для схемы, представленной на рис. 1, а, она примет вид:

i1n = (–1)k(z2 /z1 )∙(z3 /z2' )∙…∙(zn /z(n–1)' ),

где z1 , z2' , …, zn – числа зубьев колес передачи; k – число внешних зацеплений. Множитель (–1)k позволяет определить знак передаточного отношения сложного многоступенчатого механизма, т.е. направление вращения выходного звена по отношению к направлению вращения ведущего.

При передаче движения с малым передаточным отношением между валами, находящимися на большом расстоянии друг от друга для уменьшения габаритов передачи или для получения требуемого направления вращения выходного звена применяют последовательное соединение нескольких пар единичных зубчатых колес (рис. 1, б), так называемые рядовые зубчатые механизмы. Полное передаточное отношение такой передачи (1) через известные числа зубьев колес равно i1n = ω1n = (–1)k(zn /z1 ), где z1 , zn – числа зубьев ведущего и выходного колес. Промежуточные колеса влияют только на знак, но не величину передаточного отношения механизма, их называют паразитными.

Когда необходимо передавать движение между пересекающимися или между скрещивающимися осями, используют пространственные многозвенные зубчатые механизмы с применением конических или червячных передач.

Кулачковые механизмышироко применяются в устройствах управления, прерывистого движения.

Простейший кулачковый механизм (рис. 2, а) состоит из кулачка 1, толкателя 2 и стойки, образуя в точке А высшую кинематическую пару 4-го класса. Ведущее звено 1 называется кулачком или эксцентриком. Форма профиля кулачка определяется законом движения толкателя и может быть самой разнообразной, как и закон движения ведомого звена. Кулачковые механизмы позволяют получать любой закон движения ведомого звена, отличаются своей простотой и компактностью, малыми габаритами.

К недостаткам кулачковых механизмов следует отнести большие удельные давления в высшей паре, и следовательно, недолговечность механизма, а также необходимость в силовом замыкании звеньев. Возможно геометрическое замыкание с помощью пазов в кулачке, который направляет движение ведомого звена.

Величина перемещений или закон движения рабочего звена механизма определяется профилем кулачка.

д
в
г

б

а
3
г
б

Рис. 2

По виду преобразуемых движений кулачковые механизмы можно разделить на следующие группы: механизмы, в которых вращательное движение кулачка 1 преобразуется в возвратно-поступательное или качательное движение толкателя 2 (см. соответственно рис. 2, а, б); механизмы, в которых возвратно-поступательное движение кулачка 1 преобразуется в возвратно-поступательное или качательное движение толкателя 2 (см. соответственно рис. 2, в, г); пространственные или коноидные кулачковые механизмы, решающие функции двух переменных, например, φ2 = φ2 (x, φ) (см. рис. 2, д). Эти механизмы имеют две степени свободы. Применяются они в передающих устройствах.

Толкатели кулачковых механизмов в зависимости от вида кинематического элемента толкателя подразделяются на: точечные (см. рис. 2, д), плоские и тарельчатые (см. рис. 2, а), с профилем, очерченным по радиусу или сфере (см. рис. 3.9, д), роликовые или шариковые (см. соответственно рис. 2, в, г).

Механизмы винт – гайкаиспользуются для преобразования вращательного движения в поступательное. Для преобразования поступательного движения во вращательное эти механизмы используются редко (механизм перемещения пленки фотоаппарата).

Достоинствами таких механизмов являются высокая точность и плавность поступательного перемещения, простота конструкции и изготовления, компактность, надежность в работе, возможности получения самотормозящей передачи и создания значительных усилий при малых перемещениях. Недостатки механизмов винт – гайка – большие потери на трение в винтовой паре, что обуславливает низкий КПД и повышенный износ.

Механизмы винт – гайка применяют для перемещения магнитных и оптических головок считывания и записи информации в дисководах ПЭВМ; перемещения координатных столов технологического оборудования при изготовлении полупроводниковых и электронных приборов; настройки волноводов; фокусировки окуляров и объективов: перемещения кареток и суппортов станков; измерительных и регулировочных устройств; рабочих органов роботов, испытательных машин и т.д.

Основными элементами механизмов винт – гайка являются винт 1 и гайка 2 (рис. 3, а). Материалы винта и гайки должны обладать низким коэффициентом трения, высокой износостойкостью и хорошо обрабатываться.

в
б
а
Рис. 3

Винт представляет собой цилиндр, на части которого нарезана резьба. Изготавливают винты обычно из сталей 45 и 50, а в кинематических передачах– из пластмасс. Гайка представляет собой втулку или корпус с резьбой в отверстии. Для уменьшения трения скольжения (рис. 3, б) гайки изготавливают из пластмасс, оловянистых бронз типа БрОЦС 6-6-3, латуни Л60 … 62. С целью уменьшения потерь на трение применяют механизмы винт – гайка с трением качения (рис. 3, в). В этой более сложной конструкции резьба заменена винтовыми канавками кругового профиля. Канавки на винте и гайке образуют замкнутую винтовую поверхность, ограничивающую полость, в которую помещаются шарики. Контакт между винтом и гайкой осуществляется посредством шариков. При вращении винта шарики увлекаются в направлении его поступательного движения, попадают в отводной канал в гайке и снова возвращаются в полость между винтом и гайкой.

Простейшие винтовые механизмы могут состоять из двух и трех звеньев. Наибольшее распространение получили трехзвенные схемы. Рассмотрим возможные кинематические схемы винтовых механизмов (рис. 4):

двухзвенный механизм (рис. 4, а). Винт 1 вращается и одновременно движется поступательно, гайка 2 неподвижна. Механизмы с такой схемой обладают наибольшей точностью получения линейных перемещений при ограниченной величине этих перемещений (до 50 мм). Применяют эту схему в измерительных устройствах (микрометры), механизмах настройки волноводов;

– трехзвенный механизм (рис. 4, б). Ведущий винт 1 образует со стойкой вращательную пару и винтовую пару с гайкой 2, которая движется поступательно по неподвижным направляющим. Механизмы с такой схемой обладают меньшей точностью, но значительным линейным перемещением гайки. Используют их для перемещения координатных столов технологического оборудования при изготовлении полупроводниковых приборов и для перемещения магнитных и оптических головок в дисководах ПЭВМ;

φ2
φ1
φ2
φ1
г
в
б
а
???. 4

трехзвенный механизм (рис. 4, в). Ведущим звеном является зафиксированная в осевом направлении вращающаяся гайка 2. Ведомое звено – винт 1 образует со стойкой поступательную кинематическую пару. Механизмы с такой кинематической схемой используются для получения сравнительно грубых установочных перемещений (установка на резкость окуляра бинокля);

двухзвенный механизм (рис. 4, г). Гайка 2 вращается и движется поступательно, винт 1 является стойкой, неподвижен. Механизмы с такой кинематической схемой используют в устройствах для получения сравнительно грубых установочных перемещений;

– трехзвенный механизм с двумя разными резьбами на винте (рис. 4, д) позволяет получать за один оборот винта 1 относительно малые перемещения ведомой гайки 2. Винт 1 вращается и движется поступательно относительно стойки-гайки 3, гайка 2 перемещается поступательно относительно направляющих. Механизм называется дифференциальным и применяется для получения перемещений, равных разности ходов винта в стойке 3 и гайки 2.

В механизмах винт – гайка с трением скольжения резьба нанесена непосредственно на детали винтовой пары. Характеризуется резьба следующими геометрическими параметрами (рис. 5): d – наружный диаметр резьбы; d1 – внутренний диаметр резьбы; d2 – средний диаметр резьбы; р – шаг резьбы–расстояние, измеренное вдоль оси резьбы, между параллельными сторонами соседних витков; рh –ход резьбы, для однозаходной рh = р, а для многозаходной – рh = zр, где z – число заходов; h – рабочая высота профиля; a – угол профиля; g – угол подъема резьбы (рис. 5) образован касательной к винтовой линии в точке на среднем диаметре резьбы и плоскостью, перпендикулярной к оси резьбы, и определяется из выражения

tg g = z p/p d2 . (3)

Геометрические параметры резьб и допуски на их размеры стандартизированы. Резьбы классифицируют по различным признакам:

по форме поверхности, на которую наносится резьба – на цилиндрическую и коническую. Наиболее распространена цилиндрическая резьба. Коническую резьбу применяют для плотных соединений пробок, труб;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 182
Бесплатно скачать Реферат: Передаточное отношение многоступенчатых передач