Реферат: Перспективные интерфейсы оперативной памяти

Возникает вопрос — как можно организовать удвоенную скорость передачи данных по отношению к частоте шины памяти? Напрашиваются два решения — можно либо увеличить в 2 раза внутреннюю частоту функционирования микросхем памяти (по сравнению с частотой внешней шины), либо увеличить в 2 раза внутреннюю ширину шины данных (по сравнению с шириной внешней шины). Достаточно наивно было бы полагать, что в реализации стандарта DDR было применено первое решение, но и ошибиться в эту сторону довольно легко, учитывая «чисто маркетинговый» подход к маркировке модулей памяти типа DDR, якобы функционирующих на удвоенной частоте (так, модули памяти DDR с реальной частотой шины 200 МГц именуются «DDR-400»). Тем не менее, гораздо более простым и эффективным — исходя как из технологических, так и экономических соображений — является второе решение, которое и применяется в устройствах типа DDR SDRAM. Такая архитектура, применяемая в DDR SDRAM, называется архитектурой «2n-предвыборки» (2n-prefetch). В этой архитектуре доступ к данным осуществляется «попарно» — каждая одиночная команда чтения данных приводит к отправке по внешней шине данных двух элементов (разрядность которых, как и в SDR SDRAM, равна разрядности внешней шины данных). Аналогично, каждая команда записи данных ожидает поступления двух элементов по внешней шине данных. Именно это обстоятельство объясняет, почему величина «длины пакета» (Burst Length, BL) при передаче данных в устройствах DDR SDRAM не может быть меньше 2.

Устройства типа DDR2 SDRAM являются логическим продолжением развития архитектуры «2n-prefetch», применяемой в устройствах DDR SDRAM. Вполне естественно ожидать, что архитектура устройств DDR2 SDRAM именуется «4n-prefetch» и подразумевает, что ширина внутренней шины данных оказывается уже не в два, а в четыре раза больше по сравнению с шириной внешней шины данных. Однако речь здесь идет не о дальнейшем увеличении количества единиц данных, передаваемых за такт внешней шины данных — иначе такие устройства уже не именовались бы устройствами «Double Data Rate 2-го поколения». Вместо этого, дальнейшее «уширение» внутренней шины данных позволяет снизить внутреннюю частоту функционирования микросхем DDR2 SDRAM в два раза по сравнению с частотой функционирования микросхем DDR SDRAM, обладающих равной теоретической пропускной способностью. С одной стороны, снижение внутренней частоты функционирования микросхем, наряду со снижением номинального питающего напряжения с 2.5 до 1.8 V (вследствие применения нового 90-нм технологического процесса), позволяет ощутимо снизить мощность, потребляемую устройствами памяти. С другой стороны, архитектура 4n-prefetch микросхем DDR2 позволяет достичь вдвое большую частоту внешней шины данных по сравнению с частотой внешней шины данных микросхем DDR — при равной внутренней частоте функционирования самих микросхем. Именно это и наблюдается в настоящее время — модули памяти стандартной скоростной категории DDR2-800 (частота шины данных 400 МГц) на сегодняшний день достаточно распространены на рынке памяти, тогда как последний официальный стандарт DDR ограничен скоростной категорией DDR-400 (частота шины данных 200 МГц).

DDR2 — это «все та же DDR», мы по-прежнему имеем удвоенную скорость передачи данных за один такт внешней шины данных — иными словами, на каждом такте внешней шины данных мы ожидаем получить не менее двух элементов данных (как всегда, разрядностью, равной разрядности внешней шины данных) при чтении, и обязаны предоставить микросхеме не менее двух элементов данных при записи. В то же время, вспоминаем, что внутренняя частота функционирования микросхем DDR2 составляет половину от частоты ее внешнего интерфейса. Таким образом, на один «внутренний» такт микросхемы памяти приходится два «внешних» такта, на каждый из которых, в свою очередь, приходится считывание/запись двух элементов. Следовательно, на каждый «внутренний» такт микросхемы памяти приходится считывание/запись сразу четырех элементов данных (отсюда и название — 4n-prefetch), т.е. все операции внутри микросхемы памяти осуществляются на уровне «4-элементных» блоков данных. Отсюда получаем, что минимальная величина длины пакета (BL) должна равняться 4. Можно доказать, что, в общем случае, архитектуре «2n n-prefetch» всегда соответствует минимальная величина Burst Length, равная 2n (n = 1 соответствует DDR; n = 2 — DDR2; n = 3 —DDR3).

1.3 DDR3 SDRAM

Стандарт DDR3 на сегодняшний день еще не принят JEDEC, его принятие ожидается ближе к середине текущего года (предположительно, он будет носить имя JESD79-3). Поэтому представленная ниже информация о микросхемах и модулях памяти DDR3 пока что носит предварительный характер.

Начнем с микросхем памяти DDR3, первые прототипы которых были объявлены еще в 2005 году. Доступные сегодня образцы микросхем DDR3 основаны на 90-нм технологическом процессе и характеризуются уровнем питающего напряжения 1.5 В, что само по себе вносит примерно 30% вклад в снижение мощности, рассеиваемой этими микросхемами памяти по сравнению с микросхемами DDR2 (имеющими стандартное питающее напряжение 1.8 В). Полное снижение энергопотребления по сравнению с равночастотной DDR2 достигает примерно 40%, что особенно важно для мобильных систем. Емкости компонентов, предусмотренные предварительными спецификациями JEDEC, варьируются от 512 Мбит до 8 Гбит, тогда как типичные выпускаемые на сегодня микросхемы имеют емкость от 1 до 4 Гбит. Теоретическая пропускная способность микросхем DDR3 вдвое выше по сравнению с DDR2 благодаря использованию рассмотренной выше схемы 8n-prefetch (против 4n-prefetch в DDR2). Количество логических банков в микросхемах DDR3 также увеличено вдвое по сравнению с типичным значением для DDR2 (4 банка) и составляет 8 банков, что теоретически позволяет увеличить «параллелизм» при обращении к данным по схеме чередования логических банков и скрыть задержки, связанные с обращением к одной и той же строке памяти (tRP ). Микросхемы DDR3 корпусируются в FBGA-упаковку, обладающую рядом улучшений по сравнению с DDR2, а именно (рисунок 1.1):

- большим количеством контактов питания и «земли»;

- усовершенствованным распределением питающих и сигнальных контактов, позволяющим достичь лучшее качество электрического сигнала (необходимое для более устойчивого функционирования при высоких частотах);

- полным «заселением» массива, что увеличивает механическую прочность компонента.

Рисунок 1.1 - Корпусировка микросхем DDR3 и DDR2

Отличительной особенностью схемотехнического дизайна модулей памяти DDR3 является применение «сквозной», или «пролетной» (fly-by) архитектуры передачи адресов и команд, а также сигналов управления и тактовой частоты отдельным микросхемам модуля памяти с применением внешнего терминирования сигналов (резистором, расположенным на модуле памяти). Схематически эта архитектура представлена на рис. 6. Она позволяет добиться увеличения качества передачи сигналов, что необходимо при функционировании компонентов при высоких частотах, типичных для памяти DDR3 и не требуется для компонентов памяти стандарта DDR2.

Рисунок 1.2 - «Пролетная» (fly-by) архитектура передачи сигналов в модулях памяти DDR3

Различие между способом подачи адресов и команд, сигналов управления и тактовой частоты в модулях памяти DDR2 и DDR3 (на примере модулей, физический банк которых составлен из 8 микросхем разрядностью x8) представлено на рис. 7.

В модулях памяти DDR2 подача адресов и команд осуществляется параллельно на все микросхемы модуля, в связи с чем, например, при считывании данных, все восемь 8-битных элементов данных окажутся доступными в один и тот же момент времени (после подачи соответствующих команд и истечения соответствующих задержек) и контроллер памяти сможет одновременно прочитать все 64 бита данных.

В то же время, в модулях памяти DDR3 вследствие применения «пролетной» архитектуры подачи адресов и команд каждая из микросхем модуля получает команды и адреса с определенным отставанием относительно предыдущей микросхемы, поэтому элементы данных, соответствующие определенной микросхеме, также окажутся доступными с некоторым отставанием относительно элементов данных, соответствующих предыдущей микросхеме в ряду, составляющем физический банк модуля памяти. В связи с этим, с целью минимизации задержек, в модулях памяти DDR3, по сравнению с модулями DDR2, реализован несколько иной подход ко взаимодействию контроллера памяти с шиной данных модуля памяти. Он называется «регулировкой уровня чтения/записи» (read/write leveling) и позволяет контроллеру памяти использовать определенное смещение по времени при приеме/передачи данных, соответствующее «запаздыванию» поступления адресов и команд (а, следовательно, и данных) в определенную микросхему модуля. Этим достигается одновременность считывания (записи) данных из микросхем (в микросхемы) модуля памяти.

Рисунок 1.3 - Регулировка уровня чтения/записи (read/write leveling) в модулях памяти DDR3

Предположительно, модули памяти DDR3 будут предлагаться в вариантах от DDR3-800 до DDR3-1600 включительно, далее не исключено появление и более высокоскоростных модулей категории DDR3-1866. Рейтинг производительности модулей памяти DDR3 имеет значение вида «PC3-X», где X означает пропускную способность модуля в одноканальном режиме, выраженную в МБ/с (если быть точным — млн. байт/с). Поскольку модули памяти DDR3 имеют ту же разрядность, что и модули памяти DDR2 — 64 бита, численные значения рейтингов равночастотных модулей памяти DDR2 и DDR3 совпадают (например, PC2-6400 для DDR2-800 и PC3-6400 для DDR3-800).

Типичные схемы таймингов, предполагаемые в настоящее время для модулей памяти DDR3, выглядят весьма «внушительно» (например, 9-9-9 для DDR3-1600), однако не стоит забывать, что столь большие относительные значения таймингов, будучи переведенными в абсолютные значения (в наносекундах), учитывая все меньшее время цикла (обратно пропорциональное частоте шины памяти), становятся вполне приемлемыми. Так, например, задержка сигнала CAS# (tCL ) для модулей памяти DDR3-800 со схемой таймингов 6-6-6 составляет 15 нс, что, конечно, несколько великовато по сравнению с «типичными» DDR2-800 со схемой таймингов 5-5-5, для которых tCL составляет 12.5 нс. В то же время, память типа DDR3-1600 со схемой таймингов 9-9-9 уже характеризуются величиной задержки tCL всего 11.25 нс, что находится на уровне DDR2-533 с достаточно низкими задержками (схемой таймингов 3-3-3). Таким образом, даже при предполагаемом на данный момент «раскладе» схем таймингов модулей памяти DDR3 можно ожидать постепенное снижение реально наблюдаемых задержек при доступе в память, вплоть до значений, типичных для нынешнего поколения модулей памяти DDR2. К тому же, не стоит забывать и о дальнейшем снижении задержек (и снижении таймингов) по мере развития технологии.

1.4 RAMBUS (RDRAM)

На данный момент существует только один способ повышения пропускной способности (BW — BandWidth) любой подсистемы — это увеличение либо частоты коммутации шины, либо ее "ширины" (разрядности). Совместное увеличение этих параметров довольно проблематично и имеет быстрое "насыщение", поскольку влияние электромагнитной интерференции (ЭМИ) и частотных эмиссий в этом случае возрастает нелинейно — EMI=kIAf2 . Это обстоятельство вынуждает разработчиков идти на компромиссы. В противовес технологииSDRAM, где используется 64bit магистраль и частоты до 133MHz, Rambus DRAM предоставляет 16bit шину и результирующую частоту обмена до 800MHz, используя технологию DDR, передавая/принимая данные по фронту/срезу синхросигнала. Узкая шина и сверхвысокая частота значительно повышают эффективность использования и загрузку канала, максимально освобождая протокол от временных задержек. Итак, детально рассмотрим технологию Rambus DRAM.

Вообще, существует три разновидности памятиRDRAM, представляющие собой некую эволюцию развития технологии: Base (BRDRAM), Concurrent (CRDRAM) и Direct (DRDRAM). Отличие первого и второго совсем небольшие, а вот изменения последнего просто революционны. Причем, технологии Base и Concurrent настолько сильно переплетаются, что, в принципе, это одно и тоже.

Таблица 1.1

Характеристики различных видов памяти RDRAM

Основные типы технологии RDRAM
Параметр Base RDRAM Concurrent RDRAM Direct RDRAM
Частота синхронизации 250-300 MГц 300-350 MГц 400 MГц
Результирующая частота (с учетом DDR) 500-600 MГц 600-700 MГц 800 MГц
Пиковая пропускная способность 500-600 Mбайт/с 600-700 Mбайт/с 1.6 Гбайт/с
Шина данных (базовая/ECC) 8/9 бит 8/9 бит 16/18 бит
Загрузка 32bit протокола 60% 80% 97-100 %
Интерфейс общего питания (CMOS) 3.3 В 3.3 В 2.5 В
Размах активных уровней сигналов 1.0 В 1.0 В 0.8 В
Диапазон напряжений "точка-точка" (RSL) 1.5-2.5 В 1.5-2.5 В 1.0-1.8 В
Опорное напряжение 2.0 В 2.0 В 1.4 В
Число высокоскоростных сигналов RSL 13 13 30
Число выводов для каждого из каналов 32 32 72
Тип корпуса микросхемы RDRAM SHP/SVP SHP/SVP CSP (EBD/CBD)

Технология DirectRambusDRAM, разработанная компанией Rambus, представляет собой высокоскоростную замкнутую систему функционирования, которая имеет свою адаптированную логику управления и точно рассчитанные параметры. DRDRAM позволяет достичь очень больших пиковых скоростей передачи данных: до 1.6 Гбайт/с на один канал и до 6.4 Гбайт/с при четырех каналах. Вся подсистема состоит из следующих компонентов: основной контроллер (RMC — Rambus Memory Controller), канал (RC — Rambus Channel), разъем для модулей (RRC - Rambus RIMM Connector), модуль памяти (RIMM — Rambus In-line Memory Module), генератор дифференциальных синхроимпульсов (DRCG — Direct Rambus Clock Generator) и сами микросхемы памяти (RDRAM — Rambus DRAM). Физические, электрические и логические принципы и согласования, применяемые в системе, определены компанией Rambus и должны строго выполняться всеми производителями для соблюдения абсолютной совместимости ее частей, так она функционирует на очень большой частоте 600/711/800 МГц, синхронизируясь сигналом 300/350/400 MГц соответственно.

Рисунок 1.4 – Схематическое изображение подсистемы памяти DirectRambus


Сигнальный протокол DirectRambusоснован на новом электрическом интерфейсеRSL (Rambus Signaling Levels), дающем возможность при помощи технологии удвоенной передачи данных (DDR — Double Data Rate) получить результирующую частоту 600/711/800 MГц и использовать стандартный CMOS-интерфейс (см.схему1исхему2) сигналовуправленияядраASIC (Application Specific Integrated Circuit). Высокоскоростной протокол сигналов RSL использует низковольтный размах (Swing) номинальных напряжений логического "0" (VOH =1.8 В) и логической "1" (VOL =1.0 В) с разностью 0.8 В (VCOS =VOH -VOL ).

К-во Просмотров: 152
Бесплатно скачать Реферат: Перспективные интерфейсы оперативной памяти