Реферат: Перспективные интерфейсы оперативной памяти
Меры частотного "разнесения" сигнальных групп вынужденные, и направлены на разделение стандартных сигналов питания/контроля (CMOS), и высокоскоростных (RSL) командных сигналов и интерфейса приема/передачи данных для уменьшения паразитноговоздействия ЭМИ и ВЧ-шумовкоммутаций шины.
Тактовый генератор вырабатывает импульсы с частотой 267-400 MГц, которые распространяются от крайней точки канала к контроллеру (CTM — Clock To Master), где разворачиваются и по другой линии идут в обратном направлении (CFM — Clock From Master), после чего попадают на терминатор (нагрузку, VTERM =1.8 В). Четкое согласование становиться возможным благодаря двум блокам автоподстройки длительности задержки в библиотечном макроядре (RAC —RambusASIC Cell), которые производят синхронизацию исходящих и входящих сигналов: блок передачи (TDLL — Transmit Delay Locked Loop) и блок приема (RDLL — Receive Delay Locked Loop). Передача команд и данных (блок TDLL) основана на эффекте точной 180° квадратурной фазы, выполняемой в цикле CFM. Все сигналы, распространяющиеся по направлению к контроллеру, синхронизируются входящими тактовыми импульсами, а сигналы, исходящие из контроллера — импульсами, идущими по направлению к нагрузке (функции блока RDLL). В процессе работы каждый блок DLL периодически осуществляет частотную ре-калибровку, учитывая условия функционирования, температуру (документ JESD63), возможные девиации напряжения и частоты. Ре-синхронизация (Re-Sync) всех узлов подсистемы, включая физические интерфейсы типа сдвига уровня напряжения и восстановления синхросигналов, представляется отдельным особенным комплексом мер, поскольку с увеличением частоты, длина волны сигнала становиться более короткой относительно собственной сигнальной трассы. В этом случае полагаться на пассивные элементы задержки (например, RC-цепь), помогающие восстановить "плывущий" протокол синхронизации, довольно опасно, учитывая влияние температуры, напряжения и 3s-вариаций (зависимость сечения рассеяния электромагнитной волны от ее частоты).
Непосредственно сам генератор представляет собой отдельную микросхему с внешним интерфейсом 24pin 150mil SSOP, и обеспечивает "гибкий синхронизм" управления по дифференциальному импульсу с минимальным периодом следования импульсов 50ps: вырабатывает синхросигналы, необходимые для функционирования отдельных компонентов памяти, синхронизирует частоту каналов с внешней системой или синхроимпульсами системного процессора, обеспечивает независимое тактирование отдельных каналов. Кроме чего формирователь обеспечивает независимое тактирование отдельных каналов, если это предусмотрено его внутренней схемотехникой, для чего применяется специализированная версия DRCG-D (Dual DirectRambusClock Generator) интерфейса 28pin 170mil TSSOP, поскольку обычно используется правило «один генератор на один канал». Помимо этого DRCG поддерживает коэффициенты умножения частоты 8x, 6x, 4x, 8/3x идва расширенных режима функционирования: режим Clk Stop ("clock off" — прекращение подачи на внешние цепи каналов синхроимпульсов, позволяющее осуществлять быстрые транзакции между периодами clock-off/clock-on и действующее совместно с режимом "дремоты" NAP интерфейсаRDRAM/RAC) и режим Power DowN (переход системы в состояние пониженного энергопотребления для минимизации рассеивания мощности, который действует совместно с режимом деактивации PDN интерфейса RDRAM/RAC). Генератор DRCG-D поддерживает коэффициенты умножения 8, 6, 4, 8/3, 9/2 и 16/3, и частоту синхронизации канала 267-533 MHz. Сигнальный интерфейс генератора предусматривает 20 сигнальных групп (здесь и далее в аналогичном контексте имеется в виду число групп отдельных сигналов без учета разрядности отдельной сигнальной шины).
Внутренние блоки DRCGпредусматривают наличие транзитного (BypassMux), тест (TestMux) и основного (MainMUX) мультиплексоров, дифференциального выходного буфера (DOB— DifferentialOutputBuffer), фазового детектора (fD— PhaseDetector), блока выравнивания фазы сигнала (PhaseAligner) и двух делителей (A/B) во входной цепи внутрикристального блока фазовой автоподстройки частоты (PLL— PhaseLockedLoop), который введен с целью создания петли обратной связи для стабилизации частоты на выходе.
Специальная "усеченная" версия тактового генератора (DRCG-Lite), пакующегося в корпус типа 16pin 225mil TSSOP, рассчитана на применение в системах с "низкочастотным" входом: внешний интерфейс DRCG-Lite содержит опорный вход от внешнего кварцевого резонатора (сигнал XIN), где нижний порог значения входной частоты составляет 14.0625 МГц, а типичный — 18.75 MГц. Также предусмотрен "низкочастотный" опорный выход (сигнал XOUT) для создания петли обратной связи в цепи внешнего резонатора, контролирующую девиации опорной частоты. Кроме этого имеется второй LVCMOS-выход (сигнал LCLK), реализованный по схеме частотного делителя, дающего половину опорной частоты и применяющийся для синхронизации остальных компонентов системы. Lite-генератор примененяется в "изолированных" системах с замкнутым циклом синхронизации (например, в видеоадаптерах), с использованием памяти, работающей в частотном диапазоне 300-400 MГц, и поддерживает коэффициенты умножения частоты 16x и 64/3x.
В составблок-схемы DRCG-Liteвходят: блок формированияисходящих синхроимпульсов (OSC — Output Signal Clocks), умножитель (Multipler), блок ФАПЧ (PLL), делитель выходного OSC-синхросигнала (/2) и два дифференциальных выходных буфера (DOB).
Активная мощность генераторов составляет менее 350 мВт при опорном напряжении (VDD ) 3.3 В. Как дополнение, введен специальный режим спектральной модуляции тактового импульса (SSC — Spread Spectrum Clock) в диапазоне 30-33 КГц для минимизации паразитного воздействия электромагнитной интерференции.
Поскольку DRCG является задающим устройством согласования внешних и внутренних цепей Rambus DRAM, рассмотрим детально схему синхронизации всей подсистемы. Входной сигнал REFCLK подается на преобразователь В, находящийся во входном каскаде ФАПЧ. Делитель А, находящийся в цепи обратной связи ФАПЧ, генерирует промежуточную частотуPLLClk=RefClk*(A/B), где RefClk=PClk*4N/(M*X). Важен также параметрY=4N/(M*X)=RefClk/PClk, характеризующий степень зависимости опорной частоты (RefClk) от частоты синхронизации с внешней системой (PClk). Выводы MULT[1:0], подающие сигнал на вход делителя А, задают коэффициент умножения ФАПЧ:X=A/B.
Частоты PClk и SynClk различаются, однако передаточная логика, входящая в состав контроллера RMC, должна выбрать подходящий делитель M или N таким образом, чтобы выполнялось обязательное условие эквивалентности: PClk/M=SynClk/N. Например, рассмотрим стандартный случай, когда CTM=400 MГц, PClk=133MHz и SynClk=100MHz: получим коэффициенты M=4, N=3 и имеем частотную зависимость PClk/M=SynClk/N=33 МГц. Параметр f@PD характеризует частоту на фазовом детекторе относительно действующей частоты (PClk/SynClk) на делителе (M/N). Фактически, f@PD=PClk/M=SynClk/N.
Блок приложений (Application Unit), входящий в состав RMC.d1, управляет сигналами по линиям M2m1[2:0] (шина соединения блока приложений и блока механизмов, являющаяся входной линией передаточной логики, и определяющая степень значимости коэффициента M), N2m1[2:0] (шина соединения блока приложений и блока механизмов, являющаяся входной линией передаточной логики, и определяющая степень значимости коэффициента N) и MULT[1:0] (шина передачи от блока приложений к DRCG, использующая параметр Х, определяющий степень отношения между PClk и RefClk), передавая их в передаточную логику и компоненты DRCG. Сами входы напрямую связанычастотными отношениями между PClk, SynClk (SClk) и CTM/CTMN (CTMN выступает как негативный "двойник" CTM — особенность дифференциального протокола) через коэффициенты M и N следующими зависимостями: M2m1=(M/2)-1 и N2m1=(N/2)-1.
1.5 FB DIMM (Fully Buffered DIMM)
Необходимость в изменении технологии серверной памяти возникла вот в связи с чем. Чем дальше, тем выше частоты модулей, используемых в серверах. Но с ростом их частоты возникает большое число проблем, связанных с такими физическими эффектами, как всевозможные наводки и перекрестные помехи. Чем выше частота работы памяти, тем сложнее с ними бороться. И в результате имеем следующую ситуацию: чем выше частота работы памяти, тем выше электрическая нагрузка на контроллер памяти, и тем меньше модулей у нас может работать одновременно. Поскольку для серверов большой объем поддерживаемой памяти есть одно из ключевых требований, необходимо как-то выкарабкиваться из этого тупика. Одним из вариантов такого выхода является технология FB DIMM.
Рисунок 1.2 – модули памяти FBDIMM
Суть FB DIMM вполне описывается словом «сериализация». А сама идеология находится вполне в современном духе перехода к последовательным шинам везде, где только можно. В частности, оказалось, что можно и в технологиях, связанных с памятью.
Идея FB DIMM состоит в том, что от общей шины памяти, на которой сидят модули памяти, мы уходим. Поэтому избыточная электрическая нагрузка, которую модули создают на контроллер, перестает быть проблемой. Вместо этого есть две шины (одна на чтение, другая – на запись) на которых сидят не сами массивы ячеек, а только управляющие буферы модуля (AMB в терминологии FB DIMM). Таким образом, питание массивов ячеек контроллером памяти более не осуществляется. Массивы ячеек основаны на технологии DDR2, здесь FB DIMM вполне пересекается с текущими технологиями. Благодаря этому, производителям памяти будет проще перейти на технологию FB DIMM.
Кроме того, все передачи контроллер памяти ведет только в буферы AMB, все данные получает оттуда же.
Все это происходит, повторюсь, по узким высокочастотным шинам. Поскольку технология ECC является присущей абсолютно всем пересылкам данных между AMB и контроллером, появляются дополнительные преимущества типа защиты команд ЕСС кодом. В этом плане FB DIMM меньше подвержены ошибкам, поскольку содержат более развитые технологии контроля ошибок и восстановления данных.
Кроме того, поскольку модуль FB DIMM фактически связан с контроллером только буфером AMB, для такой памяти гораздо проще достигнуть пропускной способности, максимально близкой к теоретической. Например, если у нас в наличии два модуля FB DIMM, мы вполне можем одновременно писать в один и читать из другого.
Кроме всего прочего, использование буфера AMB позволяет полностью скрывать от контроллера такую служебную операцию, как восстановление содержимого ячейки, refresh. Можно скрывать и некоторые другие операции. Более того, команды в модуле FB DIMM конвейеризированы, и можно отдавать следующую команду на фоне выполнения предыдущей.
К достоинствам отнесем и заметно меньшее число контактов, которые нужно разводить: в частности, в презентации от Intel (см. ссылку ниже) приводят пример 69 контактов у FB DIMM модуля против 240 у модуля DDR2. Поэтому вместо двух каналов DDR2 вполне можно разводить четыре канала, и при этом у них разводка будет занимать меньшее число контактов (276 против 480), и к ней предъявляются менее жесткие требования. Ну а результат сравнения пропускной способности двух конкурирующих типов вполне предсказуем: два канала DD2-400 имеют теоретический максимум 6.4GB/sec, а четыре канала FB DIMM способны выдать порядка 17GB/sec.
память голографический молекулярный графеновый
2. Перспективы развития оперативной памяти
2.1 MRAM
MRAM(Magneto-Resistive RAM — «Магниторезистивная RAM» или «Магниторезистивное ОЗУ») — однокристальная полупроводниковаяоперативная память, при производстве которой используются магнитный материал (часто применяемый в магнитных считывающих головках) и переход с магнитным туннелированием — MTJ (Magnetic Tunnel Junction). В основу современной конструкции MRAM положена концепция, разработанная немецким физиком Андреасом Нейем (Andreas Ney) и его коллегами из Института твердотельной электроники им. Пауля Друде, которая была опубликована в октябрьском номере 2003 журнала Nature. Авторы предложили использовать так называемые «программируемые логические элементы» на основе MRAM-памяти. Вычислительное устройство состоит из логических элементов «и», «или», «и-не» и «или-не». ?