Реферат: Перспективы энергетики с точки зрения термодинамики
Были поставлены задачи: рассказать о трех законах термодинамики, рассмотреть различные перспективы энергетики.
1. Законы термодинамики
1.1 Первый закон термодинамики
Первое начало термодинамики (закон сохранения энергии к термодинамическим процессам) гласит: при сообщении термодинамической системе например, пару в тепловой машине) определенного количества теплоты в общем случае происходит при превращении внутренней энергии системы и она совершает работу против внешних сил.
Первый закон термодинамики (закон сохранения энергии для тепловых процессов) определяет количественное соотношение между изменением внутренней энергии системы дельта U, количеством теплоты Q, подведенным к ней, и суммарной работой внешних сил A, действующих на систему.
Первый закон термодинамики - Изменение внутренней энергии системы при ее переходе из одного состояния в другое равно сумме количества теплоты, подведенного к системе извне, и работы внешних сил,
действующих на нее:
Первый закон термодинамики - количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами:
Частные случаи первого закона термодинамики для изопроцессов.
При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:
При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:
При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:
Адиабатный процесс - термодинамический процесс в теплоизолированной системе.
Теплоизолированная система - система, не обменивающаяся энергией с окружающими телами.
Формула КПД теплового двигателя:
Здесь Q1 - количество теплоты, полученное рабочим телом,
Q2 - количество теплоты, отданное холодильнику.
A - полезная работа.
Формула Карно для оценки максимального КПД теплового двигателя:
T1 - температура нагревателя, T2 - температура холодильника.1
Цикл Карно 1
Выше отмечалось, что первым, кто поставил теплоту в связь с работой, был Карно, но его работа в силу запоздалой публикации не оказала решающего воздействия на формирование первого начала термодинамики. Однако идея о том, что теплота - не субстанция, а сила ( энергия),одной из форм которой и является теплота, причем эта сила, в зависимости от условий, выступает в виде движения, электричества, света, магнетизма, теплоты, которые могут превращаться друг в друга, существовала в умах исследователей. Для превращения этой идеи в ясное и точное понятие, необходимо было определить общую меру этой силы.
Это сделали независимо друг от друга, Р.Майер, Д. Джоуль и Г. Гельмгольц. Р. Майер первым сформулировал закон эквивалентности механической работы и теплоты и рассчитал механический эквивалент теплоты (1842 г.) Д. Джоуль экспериментально подтвердил предположение о том, что теплота является формой энергии и определил меру превращения механической работы в теплоту. Г. Гельмгольц в 1847 г. Математически обосновал закон сохранения энергии, показав его всеобщий характер. Подход всех трех авторов закона сохранения энергии был различным. Майер отталкивался больше от общих положений, связанных с аналогией между ”живой силой” (энергией), которые приобретали тела при своем падении
___________________
1 http://interlibrary.narod.ru/ Доброборский Б.С.Термодинамика биологических систем.
Глава 1.Термодинамика и «Всеобщий закон биологии» Бауэра
в соответствии с законом всемирного тяготения, и теплотой, которую отдавали сжатые газы.
Джоуль шел от экспериментов по выявлению возможности использования электрического двигателя как практического источника энергии (это обстоятельство и заставляло его задуматься над вопросом о количественной эквивалентности работы и теплоты). Г.Гельмгольц пришел к открытию закона сохранения энергии, пытаясь применить концепцию движения Ньютона к движению большого числа тел, которые находятся под влиянием взаимного притяжения. Его вывод о том, что сумма силы и напряжения (т.е. кинетической и потенциальной энергией) остается постоянной, является формулировкой закона сохранения энергии в его наиболее общей форме. Этот закон - величайшее открытие XIX века. Механическая работа, электричество и теплота – различные формы энергии. Д Бернал так охарактеризовал его значение: ”Он объединил много наук и находился в исключительной гармонии с тенденциями времени“.
Энергия стала универсальной валютой физики – так сказать, золотым стандартом изменений, происходивших во вселенной. То, что было установлено представляло собой твердый валютный курс для обмена между валютами различных видов энергии: между калориями теплоты, килограммами работы и киловатт- часами электричества. Вся человеческая деятельность в целом – промышленность, транспорт, освещение и, в конечном счете, питание и сама жизнь – рассматривалась с точки зрения зависимости от этого одного общего термина – энергия.
1.2 Второй закон термодинамики.
Второе начало термодинамики – закон возрастания энтропии. В замкнутой (т.е. изолированной в тепловом и механическом отношении) системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах) и в состоянии равновесия достигаем максимума. Существуют и другие эквивалентные формулировки второго начала термодинамики, принадлежащие разным ученым: невозможен переход теплоты от тела более холодного к телу, более нагретому, без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус); невозможно создать периодически действующую, т.е. совершающую какой-либо термодинамический цикл, машину, вся работа которой сводилась бы к поднятию некоторого груза (механической работе) и соответствующему охлаждению теплового резервуара (В. Томсон, М. Планк); невозможно построить вечный двигатель второго рода, т.е. тепловую машину, которая в результате совершения кругового процесса (цикла) полностью преобразует теплоту, получаемую от какого-либо одного “неисчерпаемого” источника (океана, атмосферы и т.д.) в работу ( В. Оствальд). В. Томсон (лорд Кельвин) Сформулировав принцип невозможности создания вечного двигателя второго рода, в 1852 году пришел к формированию концепции “тепловой смерти” вселенной. Во-вторых восстановление механической энергии в прежнем количестве не может быть осуществлено. В – третьих, в будущем Земля очутится в непригодном для жизни человека состоянии.
Через 20 лет Клаузиус приходит к тому же выводу, сформулировав второе начало термодинамики в виде: энтропия вселенной стремиться к максимуму. (Под энтропией он понимал величину, представляющую собой сумму всех превращений, которые должны были иметь место, чтобы привести систему в ее нынешнее состояние.) Суть в том, что в замкнутой системе энтропия может только возрастать или оставаться постоянной. Иначе говоря, во всякой изолированной системе тепловые процессы однонаправлены, что и приводит к увеличению энтропии.