Реферат: Перспективы энергетики с точки зрения термодинамики
S = klnW.
При абсолютном нуле температуры система находится в основном квантово-механическом состоянии, если оно невырождено, для которого W = 1 (состояние реализуется единственным микрораспределением). Следовательно, энтропия S при Т = 0 равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем может стать существенной при T → 0 дискретность квантовых уровней макроскопической системы, приводящая к явлениям квантового вырождения.
Из теоремы вытекают важные следствия о свойствах веществ при температурах, близких к абсолютному нулю: приобретают нулевое значение удаленные теплоемкости при постоянных объеме и давлении, термический коэффициент расширения и давления. Кроме того, из теоремы следует недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов. Если первое начало термодинамики утверждает, что теплота есть форма энергии, измеряемая механической мерой, и невозможность вечного двигателя первого рода, то второе начало термодинамики объявляет создание вечного двигателя второго рода. Первое начало ввело функцию состояния – энергию, второе начало ввело функцию состояния – энтропию. Если энергия закрытой системы остается неизменной, то энтропия этой системы, состоящая из энтропий ее частей, при каждом изменении увеличивается – уменьшение энтропии считается противоречащим законам природы. Существование таких независимых друг от друга функций состояния, как энергия и энтропия, дает возможность делать высказывания о тепловом поведении тел на основе математического анализа. Поскольку обе функции состояния вычислялись лишь по отношению к произвольно выбранному начальному состоянию, определения энергии и энтропии не были совершенными. Третье начало термодинамики позволило установить этот недостаток.
Важное значение для развития термодинамики имели установленные Ж.Л. Гей-Люссаком законы – закон теплового расширения и закон объемных отношений. Б.Клапейрон установил зависимость между физическими величинами, определяющими состояние идеального газа (давлением, объемом и температурой), обобщенное Д.И. Менделеевым.
Таким образом, концепции классической Термодинамики описывают состояния теплового равновесия и равновесные (протекающие бесконечно медленно, поэтому время в основные уравнения не входит) процессы. Термодинамика неравновесных процессов возникает позднее - в 30-х гг.ХХ века. В ней состояние системы определяется через плотность, давление температуру и другие локальные термодинамические параметры, которые рассматриваются как функции координат и времени.
2. Перспективы энергетики.
2.1. Солнечное излучение.
В результате интенсивного использования не возобновляемых источников энергии для отопления, транспортных средств, строительно-дорожных машин сельскохозяйственных агрегатов и различных бытовых устройств, образуется огромное количество оксидов углерода, серы и азота. Все это способствует повышению температуры земной и водной поверхности, вызывает загрязнение окружающей среды, выпадение кислотных дождей, а так же стимулирует интенсивное таяние льдов, повышение уровня океанов, затопление огромных территорий суши, зарождение циклов и ураганов, охватывающих целые континенты. Эти явления ведут к широкомасштабному разрушению сельскохозяйственных угодий, исчезновению лесов и животного мира, повышенному размножению вредных насекомых, возрастанию частоты засух, лесных пожаров, проливных дождей, наводнений и т.п.
Поэтому актуальна разработка альтернативных решений использования энергии на основе нетрадиционных подходов, а так же с использованием возобновляемых источников.3 Исследования в области использования возобновляемых источников энергии связаны с созданием и практическим применением гелио- и ветроустановок, гидроэлектростанций и различного рода преобразователей. Вырабатываемые при этом энергоресурсы, кроме использования по прямому назначению, могут также накапливаться различными аккумулирующими системами.
Среди перечисленных видов возобновляемых источников, прежде всего необходимо остановиться на энергии солнечного излучения [2, 5], поток которой составляет примерно 3,8 1026 Вт и представлен всем спектром электромагнитных волн. При этом энергетическая освещенность земной атмосферы достигает примерно 1,4 кВт/м 2 , а непосредственно поверхности нашей планеты – около 1 Вт/м 2 . За двое суток Солнце посылает нам столько
тепла и света, сколько способны дать при сжатии все земные запасы угля, нефти, газа и сланцев. Однако пока не создано достаточно экономичного способа преобразования солнечной энергии в электрическую, хотя уже и имеются разработки, приемлемые для практической реализации.
Например, солнечные батареи, питающие электроэнергией космические объекты. Коэффициент полезного действия таких систем, работающих по схеме фотоэлектрического преобразования, уже превышает 20% и может быть заметно увеличен в случае использования вместо химически чистых полупроводников типа кремния, арсенида галлия и сульфацида кремния, менее дорогостоящих, но более эффективных материалов. Одним из них может быть соединение сурьмы с алюминием. Можно ожидать заметного повышения коэффициента полезного действия также и от солнечной батарей, созданных на основе сплавов сурьмы с идием. Они могут быть перспективными при
освоении области инфракрасного излучения, которое составляет около половины от всей лучистой энергии Солнца.
Наряду с солнечным излучением, перспективно использование и энергии ветра. Согласно данным, последняя квалифицируется как «солнечная», поскольку возникает в результате нагрева атмосферного воздуха солнечными лучами.
Ветровая энергия давно используется в мореплавании, а также для приведения в движение мельничных колес. С недавних пор она находит применение и для выработки электроэнергии.
Ветровые установки, как правило, сооружаются на принципе использования воздушных потоков, к тому же они громоздки, сложны и даже при диаметре колеса 150 м улавливается не более половины энергии ветра и в узком диапазоне скоростей. К тому же стоимость выработанной ими электроэнергии заметно превышает стоимость энергоресурсов, получаемых по другим технологиям. Кроме того, одной из самых сложных проблем,
__________________________________________
3 Девинс Д. Энергия / Пер. с англ. – М.:Энергоатомиздат, 1985. – 369с.
препятствующих более широкому распространению ветроэнергетических установок, является непостоянство действия ветра и часто меняющаяся его скорость. В этом направлении следует обратить внимание на совершенствование ветровых установок для конвенционных электростанций и способов аккумулирования электроэнергии.
2.2. Биомассовая энергетика.
К исключительно ценным возобновляемым источникам энергии относится биогумус, состоящий из птичьего помета, навоза животных, отходов жизнедеятельности человека и разлагающейся растительности. Уже накоплен опыт переработки перечисленных отходов, в результате чего получаются экологически чистые энергетические ресурсы в виде биогаза (70% СН4 и 30% СО2) с теплотой горения 5500-6000 ккал/м 3 . При этом одновременно осуществляется обеззараживание как вредных для природной среды патогенных микроорганизмов, так и выработка высококачественных удобрений и кормовых добавок в виде различных модификаций витаминов группы В. Причем после биообработки органических удобрений заметно сокращается или вовсе исключается применение ядохимикатов для борьбы с сорняками. Производство биогаза, высококачественных удобрений и кормовых добавок способствует улучшению экологической обстановки в местах образования и переработки биогумуса.
2.3. Энергия воды.
Еще один вид возобновляемых источников энергии – это энергия падающей воды. Преобразование потенциальной энергии падающей воды в механическую энергию вращения с целью приведения в действие мельничных колес и других механизмов, известно давно. Физические принципы преобразования энергии падающей воды в электрическую заключается в том, что упомянутая среда под напором, создаваемым плотиной гидроэлектростанций, направляется в водовод, который заканчивается турбиной. Благодаря этому турбина воздействует на вал, связанный с ротором генератора, вращающимся в магнитном поле статора. Здесь все зависит от потенциальной энергии падающей воды и коэффициента полезного действия ее преобразования в электрическую.
Мощность гидроэлектростанций определяется как количеством воды, так и перепадом между водной поверхностью водохранилища и уровнем размещения гидроагрегата. Для получения одинаковой мощности на высоконапорной гидроэлектростанции требуется меньший расход воды. Причем от напора воды зависят габариты турбины, что в целом способствует удешевлению стоимости гидросооружения.
Следует отметить, что строительство крупных гидросооружений может оказать негативное влияние на природную среду. Так, возведение высоких плотин и создание огромных водохранилищ ведет к истреблению уникальной флоры и фауны, затоплению больших площадей сельскохозяйственных угодий, сокращению стока рек и т.п. При этом с водой выносится значительное количество насосов, которые, оседая в водохранилищах, со временем снижают их мощность. Кроме того, строительство крупных гидроэлектростанций создает значительное давление на малый участок земной поверхности, что вызывает большие перенапряжения в подстилающих грунтах и создает благоприятные условия для инициирования землетрясений, особенно в сейсмоопасных зонах. Естественно, что в таких местах предпочтение следует отдавать строительству микро- и малых гидроэлектростанций.