Реферат: Підвищення довговічності деталей нанесенням зносостійких покриттів плазмово-порошковим методом

Величина зони термічного впливу на шипах хрестовин збільшується зі зростанням сили струму від 120 до180 А. Найменше її значення відповідає I = 120A і дорівнює 1,5 мм. Однак, при наплавленні по даному режиму не відбувається якісного сплавлення покриття з основою. В цьому випадку у покритті формується найбільш протяжна, груба дендритна зона, яка дорівнює 0,9 мм, що збільшує схильність до крихкості робочого шару. Довжина ЗТВ при зміні струму від 120 до 180 А збільшилася у два рази.


Рис. 5. Залежності величини зношування від часу випробування зразків:

1 - зразок вкладиша (свинцева бронза);

2 - зразок стандартної деталі (сталь 45, загартування СВЧ);

3 - зразок, відновлений з нанесенням покриття, що рекомендується, і за пропонованою технологією

При відновленні з використанням струму I = 180 А в покритті може формуватися відманштетова структура, як результат значного перегріву.

Методом планування експерименту оцінено вплив параметрів нанесення покриттів плазмово-порошковим методом. Отримані рівняння регресії, що описують вплив швидкості обертання деталі, величини сили струму та проведення операції попередньої термообробки для зняття напруг і стабілізації структури зношеного шару на величину зони термічного впливу (рівняння 1), рівень мікротвердості і її однорідність по перерізу покриття (рівняння 2) і ступінь неоднорідності структури, яка оцінена по зміні мікротвердості, % (рівняння 3).

Рівняння регресії мають вигляд:

Y1 =2,75–1,55X1 - 0,2X3 - 0,7X1 X2 –0,3X2 X3 +0,7X1 X2 X3 . (1)

Y2 = 487,25 – 58,5X1 – 105,5X2 +41,5X3 + 96,5X1 X2 X3 (2)

Y3 = 8,86 + 2,32X1 – 1,03X2 – 2,78X3 + 4,68X1 X2 – 11,6X1 X3 – 8,5X2 X3 (3)

де: Y1 – величина зони термічного впливу, Y2 – величина мікротвердості, Y3 - рівень неоднорідності мікротвердості.

При цьому швидкість обертання (Х1 ) деталі змінювали в межах V = 2,8 – 3,8 об/хв; силу струму (Х2 ) I = 200 – 260 А, попередній відпал плазмовим струменем (Х3 ) при t=850°С та без нього.

Показано, що довжина зони термічного впливу, головним чином, визначається силою струму, швидкістю обертання деталі та їх парною взаємодією. Чим вище швидкість обробки, тим менше величина зони термічного впливу.

Мікротвердість істотно залежить від зміни сили струму обробки. При зниженні від 260 до 200 А вона падає на 11,3%, за рахунок зменшення температури в зоні сплавлення. При цьому структура покриття після іспитів на зношування (в поверхневому шарі), нанесеного порошковою композицією, що рекомендується, має структуру: до 15% залишкового аустеніту (зменшилось в три рази), тростит з окремими включеннями легованого фериту та карбідів.

Найбільш значний вплив на неоднорідність структури та мікротвердості мають парні взаємодії сили струму, швидкості обертання деталі з проведенням попереднього відпалу.

Перед нанесенням покриттів на шипи хрестовин проводили попередній відпал при 850°С. При цьому відмічається підвищення концентрації хімічних елементів у перехідній зоні (у середньому на 60% Si, 3,8% Mn, 14,7% Cr, 17,5% Ni, 50% Mo), що підвищує міцність зчеплення покриття з деталлю. Це пояснюється інтенсифікацією дифузійних процесів в наслідок підвищення температури.

Запропоновано параметри обробки для промислового впровадження такої технології: попередній відпал поверхонь шипів хрестовин плазмовою дугою (струм I = 80А, напруга U = 40 В) для зневуглецювання попередньо цементованого й частково зношеного шару; нанесення покриття при зварювальному струмі I = 150 А та напрузі дуги U = 40 В.

У шостому розділі надається оцінка запасу міцності й зносостійкості колінчастих валів. Розглядається промислове випробування та впровадження розробок.

Статистичний аналіз експлуатаційної стійкості двигунів у різні часові періоди показав, що більш пізній період (2002 - 2003р.р.) у порівнянні з попереднім (2001 р.) характеризується переважно виходом з ладу деталей за інтенсивним зношуванням. Так, якщо до напрацювання 4000 мото - ч у більше ранньому періоді виходило з ладу » 23% всіх двигунів, що спостерігалися в експлуатації, то в другому (при тому ж самому напрацюванні) цей показник досягав 70%, при гарантії напрацювання (яку дає завод-виробник) до капітального ремонту 6000 мото - ч.

Для підвищення довговічності колінчастих валів, як основної деталі двигуна, здійснювали відновлення з використанням запропонованого складу покриття і технології його нанесення. Порівняльні дослідження таких валів і виготовлених за діючою технологією показали, що перші мають в 1,5 рази вищу зносостійкість.

Методом рентгеноструктурного аналізу показано, що це досягається формуванням у покритті структур мартенситу та залишкового аустеніту, карбідів, оксидів, нітридів. Після експлуатації доля залишкового аустеніту зменшується з 50% до 15%.

При відновленні колінчастих валів нанесенням покриттів плазмово-порошковим методом можливе зниження їхньої втомної міцності через зменшення ефективного перерізу шийок (шліфування й наявність зони термічного впливу).

Виконано розрахунок величини запасу міцності відновленого колінчатого вала V - образного шестициліндрового двигуна СМД - 60.

Розрахунками показано, що на зменшення втомної міцності спряження щока - шийка впливає зниження запасу міцності шатунної шийки. Встановлено припустиму максимальну величину її шліфування перед нанесенням покриття (до 0,15 мм) і зони термічного впливу (не більше 2мм). При досягненні таких значень рекомендується відновлення валу з нанесенням покриття після 2-го ремонтного розміру. Тільки в цьому випадку забезпечується запас міцності шатунної шийки значно вище мінімально припустимого.

Стендові випробування колінчастих валів з нанесеним покриттям, запропонованим плазмово-порошковим методом показали, що максимальне зношування для шатунних шийок (1 - 4) становить 0,002 мм, а для корінних (4) - 0,003 мм. Мінімальне зношування шатунних шийок (2 - 5 й 3 - 6) і корінних (3) не перевищує 0,001 мм.

Випробування колінчастих валів на сільськогосподарських підприємствах Харківської області показали, що зміцнений шар при дотриманні умов, обговорених вимогами на експлуатацію й обслуговування техніки, при використанні якісних мастильних матеріалів, забезпечує стабільність властивостей і структури металу покриття.

Для визначення ймовірності безвідмовної роботи колінчастих валів двигунів СМД – 60 виконано аналіз експлуатаційної стійкості 50 деталей, виготовлених згідно діючої технології, в експлуатації. Оцінено величину зношування корінних і шатунних шийок. Зафіксовано напрацювання до капітального ремонту. Оцінено дисперсію й середньоквадратичне відхилення значень, а також швидкість зношування корінних і шатунних шийок (відповідає інтервалам 11,86´10–3 –16,59´10–3 й 9,36´10–3 –12,02´10–3 мкм/мото-год).

К-во Просмотров: 196
Бесплатно скачать Реферат: Підвищення довговічності деталей нанесенням зносостійких покриттів плазмово-порошковим методом