Реферат: По "лестнице наук" - к искусству
Наум Соломонович Имянитов
Возникновение науки относят к VI веку до нашей эры и связывают с появлением в Древней Греции первых теоретических систем Фалеса и Демокрита [1, стр. 54-98; 2]. Уже у Аристотеля имеется разделение науки на физику (природа), этику (общество) и логику (мышление). В XVII веке Ф. Бэкон подразделял знания на историю, поэзию и философию. Основы совремённой, более детальной классификации наук, заложил Сен-Симон, затем О. Конт в XIX веке систематизировал его идеи и составил "энциклопедический ряд" из шести основных наук, расположив их в порядке уменьшения абстрактности [3]. Этот ряд теперь принято называть иерархической лестницей наук. Если не принимать во внимание некоторые разночтения [4, 5 ,6, 7], в современной версии лестница имеет вид:
Схема 1. Иерархическая лестница наук.
Иногда в иерархию не вставляли математику на том основании, что у неё нет собственного предмета изучения, однако впечатляющие успехи, например, в создании общей теории всех взаимодействий [8, 9] на основе применения идей симметрии и многомерности (10, 26 измерений!) или в описании "большого взрыва" при возникновении Вселенной - следует отнести скорее к чистой математике, чем к теоретической физике [9].
Рассмотрим возможные изменения в составе и структуре иерархической лестницы наук, а также её место в разных культурно-исторических типах общества. Изложенное далее должно способствовать правильному пониманию будущего каждой науки, её возможностей, целей и задач, более того - направлений и особенностей развития познания в целом и места в нём человека.
Параллельное смещение границ наук
На III Всероссийский философский конгресс автором была представлена концепция параллельного смещения границ наук по их иерархической лестнице [10]. В результате развития каждой из наук становятся все более сложными объекты, которые эта наука может эффективно исследовать. Физика осваивает пограничные области химии, химия – биологии. Так, химическая физика объяснила периодический закон Д.И. Менделеева, природу химической связи. Биологическая химия изучает обмен веществ в живых организмах, раскрыла устройство и механизм действия генетического кода.
Освоение нижележащими науками пограничных областей вышележащих наук происходит в соответствии со сформулированным ранее принципом взаимной обусловленности развития и деградации [11].
В результате экспансии нижележащих наук в пограничные области расположенных выше смежных наук как верхняя, так и нижняя границы каждой науки смещаются в сторону усложнения объектов. Коротко говоря, происходит параллельное (совместное) смещение наук [12].
Параллелизм в смещении наук не надо понимать слишком буквально: смещение границ наук происходит не одновременно. "Физикализация" химии происходила дважды: в XVII–XVIII вв. на основе успехов классической механики, и в XX в. в связи с достижениями квантовой механики. В экспансии физико-химических наук в биологию имели место три "волны": в XVII-XVIII вв. на основе успехов классической механики, в XVIII–XIX вв. в результате достижений биохимии в области физиологии растений и животных, а в XX в. на основе развития молекулярной биологии, в особенности выяснения химических основ генетики [13, стр. 133].
Неодновремённость в смещении границ приводит к преходящим изменениям в соотношениях содержаний, объёмов наук. Может ли одна наука быть полностью поглощена другой, рассмотрим в следующих разделах.
Выводимо ли высшее из низшего?
Многовековую историю имеют споры по вопросам: "Можно ли науки, находящиеся на более высоких ступенях иерархической лестницы, вывести из расположенных ниже? Объяснить все явления химии (биологии) на основе физики?"
Активными сторонниками несводимости были многие выдающиеся учёные: Аристотель, Шталь, Кант, Либих, Пастер, Вирхов, Бор, Вернадский, Бехтерев, Семенов, Дубинин.
Не менее блестящие имена в списке приверженцев сводимости: Ньютон, Декарт, Лавуазье, Лаплас, Бертолле, Ломоносов, Дальтон, Гейзенберг, Шрёдингер, Моно, Волькенштейн, Китайгородский [13, стр. 134-177].
Приведём ссылки на некоторые подробные работы по этому вопросу, в том числе научно-популярные [4, 13, стр. 132-181; 14, 15]. Сторонники несводимости утверждают, что только нижележащие науки могут быть выведены из вышележащих, обратное же в принципе невозможно. Главные теоретическими аргументы сторонников несводимости: во-первых, философское положение о возникновении нового качества при переходе на более высокую ступень и, во-вторых, общие гносеологические следствия математических теорем Геделя [13, стр.157-158], устанавливающих непреодолимые ограничения познавательным возможностям формальных дедуктивных построений. Не следует переоценивать силу приведённых аргументов: в частности, теорема Геделя утверждает только, что из низшего нельзя вывести высшее в полном объёме. Представляет интерес попытка строгого доказательства несводимости статистической физики к классической механике путём молекулярно-динамического моделирования [4].
Позитивный выход из спора предлагает "концепция многовариантности реализаций" ("theory of multiple realization"). По ней [16, 17] трудности при переходе от низшего к высшему не имеют принципиального характера, а связаны исключительно с огромным количеством вариантов построения высшего на базе данного низшего. Так, двигаясь от ствола дерева, трудно попасть на определенную заранее ветку [18]. И наоборот, низшее легко выводится из высшего: с любой периферийной ветки легко переместиться к стволу. Например, биохимия позволяет сконструировать много вариантов генетического кода, но выбрать из них тот единственный, который реализован на нашей планете, практически невозможно.
Проблему сводимости – несводимости существенно конкретизируют и проясняют изложенные выше представление о параллельном смещении границ наук. Главный вопрос, который решается в спорах: "Сохранится ли в будущем, например, химия? Или физика объяснит все химические явления?" При этом из очевидных фактов редукции к физике пограничных областей химии часто делается неверный вывод о полном поглощении химии физикой. Здесь не учитывается, что одновременно к химии редуцируется пограничная область биологии. В результате объекты изучения химии усложняются, и она остаётся несводимой к физике как наука в целом. Та же диалектика сводимости – несводимости имеет место и для физики в системе математика – физика – химия, для биологии в системе химия – биология – социология. Концепцией о параллельном смещении границ наук на обозримый период снимаются шокирующие многих ученых [7] представления о поглощении одних наук другими: физики – математикой, химии – физикой, биологии – химией, социологии – биологией.
Важно обратить внимание и на то, что граница науки является также естественной точкой роста этой науки за счёт ранее неизвестных её областей, без агрессии или "гибридизации" с соседей наукой. Так, после изобретения микроскопа появилась микробиология. Таковы ядерная физика, физика элементарных частиц, химия полимеров, супрамолекулярная химия. Последняя изучает молекулярные ансамбли и межмолекулярные (нековалентные) взаимодействия [19].
Развитие лестницы наук вниз и вверх
Особый познавательный и прогностический интерес представляют возможные изменения на нижнем и верхнем концах лестницы наук. Прогнозы в этой области можно пытаться делать на базе общих законов развития.
Общие законы развития сформулированы Гегелем и дополнены в более поздних работах [20, 21, 22]:
- развитие есть возникновение высшего из низшего (причём не из максимально, а из оптимально развитого низшего);
- высшее включает низшее и сохраняет его в качестве своей основы или фундамента, при этом обеспечиваются условия для максимального развития включённого низшего;
- включённое низшее подчиняется высшему;
- подавляющая часть низшего не включается в высшее, а образует среду, в которой функционирует высшее,
- образующееся высшее имеет уровневую, иерархическую структуру.
Интересна точка зрения, что ниже физической ступени развития материи находится бесконечный ряд всё более простых форм материи [21], а сингулярное состояние [23] является границей, разделяющей физическую и субфизическую (возможно, физический вакуум) формы материи [21, 24].
"Субфизическая форма материи количественно должна превосходить физическую на много порядков подобно тому, как, например, физическая форма материи превосходит живую материю на 14-17 порядков (см. выше, общие законы развития). Субфизическая форма должна иметь качественно иную форму пространства и времени, в которые должны быть "вписаны" физическое пространство и время. Субфизическая форма материи должна обладать иными, чем масса и энергия, основными свойствами. Следует предположить поэтому, что существование субфизической формы материи можно будет установить, когда понятия массы и энергии окажутся недостаточными для объяснения обнаруженных форм реальности, когда эти понятия встретятся с неразрешимыми парадоксами" [21].
Важно обратить внимание на то, что субфизика, находясь на ступень ниже физики, попадает в математику (схема 1). И это не является случайностью или результатом ошибочных построений: упомянутые выше объекты субфизики (физический вакуум, сингулярное состояние; см. также начало статьи) изучаются, по крайней мере в настоящее время, исключительно чисто математическими методами [9]. Таким образом, в обсуждаемой лестнице наук при принятой терминологии субфизика представляет собой раздел математики.
Рассмотрим прогнозы относительно развития верхнего конца лестницы наук. Если считать, что развитие материи будет продолжаться и дальше, то придётся признать, что человек представляет собой одну из рядовых и преходящих ступеней развития и находится по отношению к будущей "сверхсоциальной" ступени так же, как растения и животные относятся к человеку. Это приводит к отрицанию понимания человека как "высшего цвета" природы [25]. Такое представляется большинству людей, в том числе учёных, совершенно неприемлемым, хотя единственными аргументом здесь является: "этого не может быть никогда!" (По А. Чехову). Распространена концепция, согласно которой человечество "есть несомненно высшая и последняя ступень развития материи, но она сама способна к бесконечному развитию" [24, 25].
--> ЧИТАТЬ ПОЛНОСТЬЮ <--