Реферат: Поиск структурно-химической информации в Internet

А.А. Максименко

Курсовая работа по химии

Тема :”Поиск структурно-химической

информации в Internet и её анализ с помощью прикладных программ.”

Руководитель-доц. В.Б. Налбандян

г.Ростов-на-Дону.2001г.

План работы :

1.а) Дифракционные методы-рентгеноструктурный анализ и нейронография-как важнейшие источники структурно-химической информации.

б) Их основы, возможности и ограничения.

в) Результаты расшифровки ( пространственные группы, параметры ячейки, координаты, заселённости и тепловые параметры независимых атомов)

2. Важнейшие журналы и система доступа к файлам кристаллографической информации.

3. Базы данных и программы для визуализации и анализа структурных данных(DIAMOND, TOPOS)

4. Примеры описания структуры.

5. Список использованной литературы.

1.Дифракционные методы исследования структур.

а) Роль возбудителя дифракционных эффектов в кристалле могут выполнять рентгеновские лучи, поток нейтронов или поток электронов. Соответственно существуют три дифракционных метода структурного анализа: рентгеноструктурный, нейтронографический и электронографический.

По общему принципу они родственны(основанные на эффекте дифракции), но каждый имеет свои специфические черты и особенности, т.к. характер взаимодействия волн разной природы с атомами кристалла различен. Рентгеновские лучи рассеиваются электронами атомов, поток нейтронов-ядрами, а поток электронов-электромагнитным полем ядра и электронов.

По целому ряду принципиальных и технических особенностей рентгеноструктурный анализ наиболее эффективен для практического исследования кристаллической структуры.

Рентгеноструктурный анализ появился в 1912г., когда Лауэ и его сотрудники открыли эффект дифракции рентгеновских лучей при их прохождении через кристалл.

Это явление аналогично дифракции световых лучей, пропускаемых через штриховую решётку. Пучок монохроматических лучей, направленных на пластинку с системой равноотстоящих отверстий, распространяется за пластинкой по ряду избранных(дискретных) направлений. Происходит это вследствие наложения сферических волн, исходящих из каждого отверстия. В некотором произвольном направлении эти волны не совпадают по фазе и в совокупности взаимно гасят друг друга. Но если разность фаз лучей , исходящих из соседних отверстий, составит целое число периодов, то они не погасят, а взаимно усилят друг друга. Этому условию и удовлетворяют дифракционные лучи.

Кристалл является периодической атомной структурой. Если использовать такие лучи, которые рассеиваются атомами и имеют длину волны, близкую к межатомным расстояниям, то должен наблюдаться аналогичный эффект. Периоды повторяемости решётки кристалла лежат обычно в пределах 35-130Е(1Е=0.1нм). Поэтому для дифракции на кристалле требуется излучение с длинной волны несколько короче, иначе будет наблюдаться малое число отражений.

Общую схему рентгеноструктурного анализа можно сравнить с работой микроскопа. Роль объектива, разлагающего в спектр лучи, рассеянные предметом, играет рентгеновская камера(дифрактометр) с исследуемым кристаллом: первичный пучок лучей, создаваемый рентгеновским аппаратом, разлагается кристаллом в дифракционный спектр. Роль окуляра, собирающего лучи спектра в увеличенное изображение предмета, играет ЭВМ: путем математической обработки дифракционных характеристик-направлений и интенсивности дифракционных лучей, она воссоздаёт увеличенное изображение распределения электронной плотности по элементарной ячейке кристалла; позиции максимумов плотности отвечают размещению атомов.

Нейтроноструктурный анализ. Нейтронография является относительно дорогим и длительным методом, она служит для восполнения несовершенства рентгеноструктурного анализа. По сравнению с рентгеновскими факторами рассеяния, которые увеличиваются с атомным номером, сечение рассеяния нейтронов на атомах изменяется в очень узких пределах. Поэтому нейтронография более эффективна для определения атомных параметров лёгких атомов в молекулах, содержащих тяжёлые атомы. Это в особенности важно для изучения водородных связей как в малых молекулах, так и в больших биологических макромолекулах. Нейтронография также полезна для распознавания соседних в периодической таблице атомов, для которых различие рентгеновских факторов рассеяния очень мало.

В отличии от рентгеновских факторов рассеяния, интенсивность рассеяния нейтронов не убывает при увеличении угла рассеяния, т.к. размеры ядер очень малы по сравнению с длинной волны нейтронов. Это делает монокристальную нейтронографию особенно мощным методом для определения молекулярной структуры с высокой точностью, поскольку число отражений на один параметр может быть достаточно большим.

б)Основные задачи рентгеноструктурного анализа в химии. Стереохимические задачи. Основной задачей рентгеноструктурных исследований является решение стереохимических вопросов. По-видимому, это положение сохранится и в ближайшем будущем.

В качестве главных стереохимических проблем можно назвать следующие четыре задачи:

1.Установление корреляции между структурными характеристиками вещества и его физико-химическими свойствами. Эта задача остаётся актуальной, поскольку с усложнением состава и многообразия исследуемых соединений, привычные критерии тех или иных сторон строения, основанные на спектральных, магнитных и других косвенных физико-химических данных, часто оказываются недостаточно убедительными, а иногда и просто ошибочными.

2.Получение опорных структурных данных для углубленной разработки тех или иных сторон теории хим. связи. Весьма часто в результате структурного исследования выдвигается качественная теоретическая концепция, позволяющая интерпретировать отдельные специфические стороны строения исследованного вещества. Необходимость проверки и подтверждения выдвинутой гипотезы, оценки круга объектов, в которых она должна проявляться, вызывает поток дальнейших структурных расшифровок родственных кристаллических веществ. Так проблемы теории хим. связи, квантовой химии становятся целью рентгеноструктурного анализа.

3.Изучение процесса химических реакций. Какие преобразования происходят в многостадийном процессе химического реагирования-один из самых актуальных и сложных вопросов многих реакций. Структурное изучение исходных ве-в, промежуточных и конечных продуктов, возникающих в разных термодинамических условиях, позволяет уяснить многие стороны процесса. Особенно существенно в этом аспекте структурное изучение продуктов, возникающих на разных стадиях каталитических реакций.

4.Установление стереохимических и кристаллохимических закономерностей, управляющих строением соединений различных химических классов. Ради установления, проверки и углубления стереохимических закономерностей и проводятся, как правило, систематические структурные исследования; это именно то направление, в котором работает большинство специалистов-кристаллохимиков.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 323
Бесплатно скачать Реферат: Поиск структурно-химической информации в Internet