Реферат: Похідна суми добутку та частки з наведеними прикладами
в)
Наслідок. Постійний множник можна виносити за знак похідної:
Доведення. Застосувавши множник можна виносити за знак теорему про похідну де а – число, отримаєм
Приклади.
а)
б)
Похідна частки двох функцій .
Теорема. Якщо функції мають похідні у всіх точках інтервалу ]a; b[, причому для любого х є ]a; b[, то
для любого х є ]a; b[.
Доведення. Позначим тимчасово через найдем використовуючи опреділення похідної.
Нехай х0 – деяка точка інтервала ]a; b[.
Тоді,
Навіть, так як
то
і послідовно
Так як х0 – вільна точка інтервалу ]a; b[, то в послідній формулі х0 можна замінити на х. Теорема доведена.
Приклади.
а)
б)
Формули (3) (стор 20) [2] Д.М. Роматовський “Збірник задач з ТМ”.
Літ [4] табл.6 стор 323 А.М. Кменжова і В.А. Малов “Довідник з ТМ” т.І.