Реферат: Полипропилен
Реакция протекает с избытком алюминия при 100—120° С практически количественно. Для крупного производства, однако, этот метод не годится из-за трудности получения исходных алкилпроизводных ртути, с одной стороны, и их высокой токсичности, с другой.
Циглер модифицировал этот метод, предложив заменить натрий гидридом натрия :
В результате реакции, которую можно осуществлять в углеводородной среде (например, в гексане или циклогексане), получается раствор диэтилалюминийгидрида. Этот раствор затем непосредственно переводится в триэтилалюминий действием этилена при 70—80° С и повышенном давлении:
Данная реакция составляет сущность так называемого прямого синтеза триэтилалюминия , уравнение которого можно записать в виде:
При проведении реакции возникают известные трудности; особенно сложно приготовить алюминий в тонкоизмельченной активной форме без поверхностных оксидных пленок. Измельчение можно проводить на вибрационных мельницах в среде =50% раствора триэтилалюминия. Полученная суспензия активного алюминия затем вступает в реакцию с водородом в автоклаве при 10-120° С, давлении водорода 20—30 ат и в присутствии в качетве катализатора пористого титана:
На следующей стадии проводится реакция (7), и весь цикл повторяется сначала.
Хотя в настоящее время в промышленности применяются оба посмотренных метода синтеза триэтилалюминия, прямой синтез в будущем непременно получит преимущественное развитие, так как в этом случае практически отсутствуют трудно утилизируемые отходы производства .
Диэтилалюминийхлорид можно с успехом применять вместо триэтилалюминия в каталитических системах с a , g , d-модификациями треххлористого титана. Физические свойства диэтилалю-минийхлорида: температура кипения при 760 мм рт. ст. 208° С, при 0,9 мм рт. ст. 44° С; плотность 0,9736 г/мл; температура плавления —74° С; вязкость 1,45 спз при 23° С. С алифатическими и ароматическими углеводородами смешивается в любом соотношении. Степень ассоциации до мостиковой димерной структуры выше, чем у триэтилалюминия и этилалюминийхлорида.
В производстве диэтилалюминийхлорид получают из этилалюминийсесквихлорида, однако вместо реакции с NaСl применяется частичное дегалогенирование металлическим натрием по схеме:
Влияние условий проведения реакции на процесс полимеризации .
Основные параметры процесса полимеризации, а именно общая скорость процесса, стереоизомерный состав полимера и его молекулярный вес, зависят от химической и физической природы катализатора, полимеризационной среды и физических условий, а также степени чистоты отдельных компонентов системы и их концентрации.
Линейный полиэтилен на таких катализаторах может образовываться как в гомогенной, так и в гетерогенной фазе, поскольку он не имеет пространственных изомеров. Для получения же изо-тактического полипропилена предпочитают применять твердые хлориды титана (прежде всего TiCl3 ) в сочетании с алюминийорганическим компонентом. О роли твердой фазы говорит тот факт, что в присутствии каталитического комплекса металлорганического соединения с переходным металлом, адсорбированного на аморфном носителе, при полимеризации пропилена образуется атактический аморфный продукт. Тот же комплекс, адсорбированный на кристаллическом носителе (треххлористый титан), позволяет получить изотактический полимер . Следует отметить, что самой по себе регулярности решетки носителя еще недостаточно для того, чтобы катализатор приобрел высокую стереоспецифичность; носитель должен также удовлетворять определенным стерическим условиям, связанным с величиной его ионов и расстоянием между ними. Так, в присутствии трехбромистого или трехиодистого титана атактического полимера образуется больше, чем при применении треххлористого титана.
Льюисовский характер обоих каталитических компонентов предопределяет и выбор среды. Наиболее выгодной средой считаются инертные углеводороды. Поскольку треххлористый титан действует как сильный адсорбент, наиболее предпочтительны алифатические углеводороды (гептан, гексан, пропан и т. п.), которые сорбируются в меньшей степени, чем ароматические.
Влияние концентрации мономера и компонентов катализатора
Из приведенных данных по механизму стереоспецифической полимеризации следует, что активные центры образуются при сорбировании алюминийорганического компонента на поверхности твердой фазы. Поэтому в первую очередь именно этот компонент будет оказывать влияние на скорость образования полимера и его стереорегулярность.
Наибольший выход изотактического полипропилена получается при использовании треххлористого титана с малой удельной поверхностью и хорошо развитыми кристаллами. Однако на таком катализаторе полимеризация протекает медленно. При увеличении удельной поверхности применяемого катализатора одновременно со скоростью реакции возрастает содержание атактической фракции и стереоблоков в полимере, что связано, очевидно, с увеличением дефектов в твердой фазе.
Очевидно, что на изломах и гранях кристаллов мономерные звенья могут присоединяться к растущей цепи из разных положений, вследствие чего образуются аморфные полимеры или—при более специфических условиях—в большей или меньшей степени регулярные стереоблоки (стереоизомерный сополимер). Чем мельче частицы твердой фазы, тем больше изломов относительно плоскостей, отличных от обычной плоскости 001 (обозначения индексами Миллера), и, как результат, часть поверхности имеет иные геометрические и химические свойства.
Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в присутствии треххлористого титана дает самый высокий выход изотактического полипропилена при больших скоростях реакции полимеризации. На степень изотактичности и скорость реакции оказывают влияние также стерические и химические свойства заместителей металлорганического соединения. При полимеризации пропилена в присутствии триметилалюминия образуется полимер с большим содержанием атактической фракции, чем при применении триэтилалюминия. Стереоспецифичностъ, однако, падает и при высших алкилах. Если один алкил алюминия заменить на галоген, то скорость реакции снижается в ряду F>Cl>Br>I; в том же порядке увеличивается молекулярный вес. Натта в результате проведенных опытов по полимеризации пропилена с треххлористым титаном в среде толуола пришел к заключению, что стереорегулярность падает в ряду
Аl(С2 Н5 )2 I > Аl(С2 Н5 )2 Вr > Al(С2 Н5 )2 С1 > Аl(С2 Н5 )2
Алюминийдигалогениды в присутствии треххлористого титана полимеризации уже не инициируют; при введении же в систему соответствующего донора (амины, пиридин) можно получить полимер с высокой стереорегулярностью. Донор и металлорганическое соединение лучше всего брать в соотношении 1 :2.
Влияние температуры
Суммарная энергия активации полимеризации пропилена на каталитической системе треххлористый титан — триэтилалюминий равна 14 ккал/моль, причем 4 ккал/моль приходится на долю теплоты растворения мономера в н - гептане .
В отличие от константы скорости молекулярный вес и стереоизомерный состав полимера, полученного на системе треххлористый титан—триэтилалюминий, при температурах ниже 80° С изменяются относительно мало. Повышение температуры, способствующее уменьшению молекулярного веса, вызывает также и заметное изменение содержания экстрагируемых фракций. Полимеры, синтезированные при 100° С, содержали лишь 3% аморфной фракции . На катализаторе Т1С13 -А1(С3 Н5 )2 I и других известных каталитических системах полимеризация проходит с более низкой скоростью, чем в присутствии TiCl3 - AIR3 или TiCI3 - BeR3 .
Влияние примесей
Оба компонента каталитической системы охотно вступают в реакцию с веществами, в молекуле которых есть атом со свободной электронной парой. В случае триэтилалюминия стремление заполнить недостающую электронную пару на алюминии настолько велико, что это вещество в нормальных условиях существует как димер с довольно большой устойчивостью. Димер энергетически более устойчив (почти на 10 ккал/моль). Триалкилалюминий образует с донорами комплексные соединения, некоторые из них настолько устойчивы, что их можно перегонять, а попытка разделить их на первоначальные компоненты часто приводит к деструкции всей молекулы .
Благодаря наличию свободных орбит переходный металл образует координационные связи с мономером за счет п-электронов последнего. Подобное взаимодействие имеет место с молекулами, имеющими свободную электронную пару. Соединения, обладающие способностью к координации, покрывают часть активной поверхности катализатора, некоторые из них действуют как каталитические яды и влияют на ход полимеризации и свойства полимера.
Аналогичным действием обладают и ненасыщенные углеводороды (пропадиен, ацетилены), которые к тому же не реагируют с триалкилалюминием и сильно сорбируются треххлористым титаном. Эти вещества снижают скорость полимеризации и модифицируют свойства полимера.
Примеси можно разделить на две группы в зависимости от того, действуют ли они как ингибиторы или как промоторы полимеризации. Сначала рассмотрим соединения с ингибирующими свойствами, часто присутствующие в сырье. При температуре полимеризации триалкилалюминий образует с полярными примесями комплексы, которые на дальнейший ход полимеризации не оказывают существенного влияния. Примеси, сорбированные на твердой фазе, где происходит реакция роста цепи, действуют гораздо интенсивнее. При малых их количествах наблюдаются индукционный период и снижение скорости полимеризации по окончании этого периода . Изменяется и стереоизомерный состав полимера: обычно повышается содержание аморфных и стереоблочных фракций.