Реферат: Полипропилен

Реакция протекает с избытком алюминия при 100—120° С практически количественно. Для крупного производства, однако, этот метод не годится из-за трудности получения исходных алкилпроизводных ртути, с одной стороны, и их высокой токсичности, с другой.

Циглер модифицировал этот метод, предложив заменить нат­рий гидридом натрия :

В результате реакции, которую можно осуществлять в угле­водородной среде (например, в гексане или циклогексане), полу­чается раствор диэтилалюминийгидрида. Этот раствор затем непо­средственно переводится в триэтилалюминий действием этилена при 70—80° С и повышенном давлении:

Данная реакция составляет сущность так называемого пря­мого синтеза триэтилалюминия , уравнение которого можно за­писать в виде:

При проведении реакции возникают известные трудности; особенно сложно приготовить алюминий в тонкоизмельченной актив­ной форме без поверхностных оксидных пленок. Измельчение можно проводить на вибрационных мельницах в среде =50% раствора триэтилалюминия. Полученная суспензия активного алюми­ния затем вступает в реакцию с водородом в автоклаве при 10-120° С, давлении водорода 20—30 ат и в присутствии в качетве катализатора пористого титана:

На следующей стадии проводится реакция (7), и весь цикл повторяется сначала.

Хотя в настоящее время в промышленности применяются оба посмотренных метода синтеза триэтилалюминия, прямой синтез в будущем непременно получит преимущественное развитие, так как в этом случае практически отсутствуют трудно утилизируемые отходы производства .

Диэтилалюминийхлорид можно с успехом применять вместо триэтилалюминия в каталитических системах с a , g , d-модификациями треххлористого титана. Физические свойства диэтилалю-минийхлорида: температура кипения при 760 мм рт. ст. 208° С, при 0,9 мм рт. ст. 44° С; плотность 0,9736 г/мл; температура плавления —74° С; вязкость 1,45 спз при 23° С. С алифатическими и ароматическими углеводородами смешивается в любом соотноше­нии. Степень ассоциации до мостиковой димерной структуры выше, чем у триэтилалюминия и этилалюминийхлорида.

В производстве диэтилалюминийхлорид получают из этилалюминийсесквихлорида, однако вместо реакции с NaСl применяется частичное дегалогенирование металлическим натрием по схеме:

Влияние условий проведения реакции на процесс полимеризации .

Основные параметры процесса полимеризации, а именно об­щая скорость процесса, стереоизомерный состав полимера и его молекулярный вес, зависят от химической и физической природы катализатора, полимеризационной среды и физических условий, а также степени чистоты отдельных компонентов системы и их кон­центрации.

Линейный полиэтилен на таких катализаторах может образо­вываться как в гомогенной, так и в гетерогенной фазе, поскольку он не имеет пространственных изомеров. Для получения же изо-тактического полипропилена предпочитают применять твердые хлориды титана (прежде всего TiCl3 ) в сочетании с алюминийорганическим компонентом. О роли твердой фазы говорит тот факт, что в присутствии каталитического комплекса металлорганического соединения с переходным металлом, адсорбированного на аморфном носителе, при полимеризации пропилена образуется атактический аморфный продукт. Тот же комплекс, адсорбирован­ный на кристаллическом носителе (треххлористый титан), позво­ляет получить изотактический полимер . Следует отметить, что самой по себе регулярности решетки носителя еще недостаточно для того, чтобы катализатор приобрел высокую стереоспецифичность; носитель должен также удовлетворять определенным стерическим условиям, связанным с величиной его ионов и расстоя­нием между ними. Так, в присутствии трехбромистого или трехиодистого титана атактического полимера образуется больше, чем при применении треххлористого титана.

Льюисовский характер обоих каталитических компонентов предопределяет и выбор среды. Наиболее выгодной средой считаются инертные углеводороды. Поскольку треххлористый титан действует как сильный адсорбент, наиболее предпочтительны алифатические углеводороды (гептан, гексан, пропан и т. п.), ко­торые сорбируются в меньшей степени, чем ароматические.

Влияние концентрации мономера и компонентов катализатора

Из приведенных данных по механизму стереоспецифической полимеризации следует, что активные центры образуются при сорбировании алюминийорганического компонента на поверхности твердой фазы. Поэтому в первую очередь именно этот компонент будет оказывать влияние на скорость образования полимера и его стереорегулярность.

Наибольший выход изотактического полипропилена полу­чается при использовании треххлористого титана с малой удельной поверхностью и хорошо развитыми кристаллами. Однако на таком катализаторе полимеризация протекает медленно. При увеличении удельной поверхности применяемого катализатора одновременно со скоростью реакции возрастает содержание атактической фрак­ции и стереоблоков в полимере, что связано, очевидно, с увеличе­нием дефектов в твердой фазе.

Очевидно, что на изломах и гранях кристаллов мономерные звенья могут присоединяться к растущей цепи из разных положе­ний, вследствие чего образуются аморфные полимеры или—при более специфических условиях—в большей или меньшей степени регулярные стереоблоки (стереоизомерный сополимер). Чем мель­че частицы твердой фазы, тем больше изломов относительно пло­скостей, отличных от обычной плоскости 001 (обозначения индек­сами Миллера), и, как результат, часть поверхности имеет иные геометрические и химические свойства.

Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в присутствии треххлористого титана дает самый высо­кий выход изотактического полипропилена при больших скоростях реакции полимеризации. На степень изотактичности и скорость ре­акции оказывают влияние также стерические и химические свой­ства заместителей металлорганического соединения. При полиме­ризации пропилена в присутствии триметилалюминия образуется полимер с большим содержанием атактической фракции, чем при применении триэтилалюминия. Стереоспецифичностъ, однако, па­дает и при высших алкилах. Если один алкил алюминия заменить на галоген, то скорость реакции снижается в ряду F>Cl>Br>I; в том же порядке увеличивается молекулярный вес. Натта в ре­зультате проведенных опытов по полимеризации пропилена с трех­хлористым титаном в среде толуола пришел к заключению, что стереорегулярность падает в ряду

Аl(С2 Н5 )2 I > Аl(С2 Н5 )2 Вr > Al(С2 Н5 )2 С1 > Аl(С2 Н5 )2

Алюминийдигалогениды в присутствии треххлористого титана полимеризации уже не инициируют; при введении же в систему соответствующего донора (амины, пиридин) можно получить по­лимер с высокой стереорегулярностью. Донор и металлорганическое соединение лучше всего брать в соотношении 1 :2.

Влияние температуры

Суммарная энергия активации полимеризации пропилена на каталитической системе треххлористый титан — триэтилалюминий равна 14 ккал/моль, причем 4 ккал/моль приходится на долю теплоты растворения мономера в н - гептане .

В отличие от константы скорости молекулярный вес и стереоизомерный состав полимера, полученного на системе треххлори­стый титан—триэтилалюминий, при температурах ниже 80° С изменяются относительно мало. Повышение температуры, способ­ствующее уменьшению молекулярного веса, вызывает также и замет­ное изменение содержания экстрагируемых фракций. Полимеры, синтезированные при 100° С, содержали лишь 3% аморфной фракции . На катализаторе Т1С13 -А1(С3 Н5 )2 I и других известных каталитических системах полимеризация проходит с более низкой скоростью, чем в присут­ствии TiCl3 - AIR3 или TiCI3 - BeR3 .

Влияние примесей

Оба компонента каталитической системы охотно вступают в реакцию с веществами, в молекуле которых есть атом со свобод­ной электронной парой. В случае триэтилалюминия стремление заполнить недостающую электронную пару на алюминии настоль­ко велико, что это вещество в нормальных условиях существует как димер с довольно большой устойчивостью. Димер энергетиче­ски более устойчив (почти на 10 ккал/моль). Триалкилалюминий образует с донорами комплексные соединения, некоторые из них настолько устойчивы, что их можно перегонять, а попытка разде­лить их на первоначальные компоненты часто приводит к деструк­ции всей молекулы .

Благодаря наличию свободных орбит переходный металл об­разует координационные связи с мономером за счет п-электронов последнего. Подобное взаимодействие имеет место с молекулами, имеющими свободную электронную пару. Соединения, обладающие способностью к координации, покрывают часть активной поверх­ности катализатора, некоторые из них действуют как каталитиче­ские яды и влияют на ход полимеризации и свойства полимера.

Аналогичным действием обладают и ненасыщенные углеводо­роды (пропадиен, ацетилены), которые к тому же не реагируют с триалкилалюминием и сильно сорбируются треххлористым тита­ном. Эти вещества снижают скорость полимеризации и модифици­руют свойства полимера.

Примеси можно разделить на две группы в зависимости от того, действуют ли они как ингибиторы или как промоторы поли­меризации. Сначала рассмотрим соединения с ингибирующими свойствами, часто присутствующие в сырье. При температуре по­лимеризации триалкилалюминий образует с полярными примеся­ми комплексы, которые на дальнейший ход полимеризации не ока­зывают существенного влияния. Примеси, сорбированные на твер­дой фазе, где происходит реакция роста цепи, действуют гораздо интенсивнее. При малых их количествах наблюдаются индукцион­ный период и снижение скорости полимеризации по окончании этого периода . Изменяется и стереоизомерный состав полимера: обычно повышается содержание аморфных и стереоблочных фракций.

К-во Просмотров: 1157
Бесплатно скачать Реферат: Полипропилен