Реферат: Полупроводниковые датчики температуры
Зависимость представляется в именованных величинах: y – в единицах выходного сигнала или параметрах датчика, x – в единицах измеряемой величины. Для датчиков температуры – Ом/°С или мВ/К.
2. Чувствительность – отношение приращения выходной величины датчика к приращению его входной величины:
S = dy/dx (2)
Для линейной части функции преобразования чувствительность датчика постоянна. Чувствительност датчика характеризует степень совершенства процесса преобразования в нем измеряемой величины.
3. Порог чувствительности – минимальное изменение значения входной величины, которое можно уверенно обнаружить. Порог чувствительности связан как с природой самой измеряемой величины, так и с совершенством процесса преобразования измеряемой величины в датчике.
4. Предел преобразования – максимальное значение измеряемой величины, которое может быть измерено без необратимых изменений в датчике в результате рабочих воздействий. Верхний предел измерений датчика обычно меньше предела преобразования по крайней мере на 10%.
5. Метрологические характеристики – определяются конструктивно-технологическими особенностями датчика, стабильностью свойств применяемых в нем материалов, особенностями процессов взаимодействия датчика с измеряемым объектом.
Метрологические характеристики, в свою очередь, определяют характер и величины погрешностей измерения датчиков. Часть погрешностей могут быть случайными и они учитываются методами математической статистики. Систематические погрешности могут быть аналитически описаны и исключены из результатов измерения.
Основными видами систематических погрешностей являются:
- погрешности, обусловленные нелинейностью функции преобразования, что характерно для полупроводниковых датчиков температуры [3];
- погрешности, обусловленные вариацией функции преобразования вследствие изменения направления действия входной величины (для датчиков температуры это нагрев-охлаждение);
- погрешности, обусловленные несоответствием динамических возможностей датчика скорости воздействия входной величины. Может быть учтено введением коэффициента термической инерции;
- дополнительные погрешности, обусловленные отличием условий работы датчика от тех, в которых определялась его функция преобразования;
- погрешности, обусловленные нестабильностью функции преобразования вследствие процессов старения материала.
6. Надежность – рассматривается в двух аспектах: механическая надежность и метрологическая надежность.
7. Эксплуатационные характеристики – к их числу могут быть отнесены: масса, габаритные размеры, потребляемая мощность, прочность электрической изоляции, номиналы используемых электрических напряжений, а также стойкость к агрессивным средам, всевозможным излучениям, искробезопасность и т.д.
8. Стоимость и возможность серийного производства.
4. ОСНОВНЫЕ ТИПЫ ПОЛУПРОВОДНИКОВЫХ
ДАТЧИКОВ ТЕМПЕРАТУРЫ
Влияние температуры на электрофизические параметры полупроводников в основном проявляются в изменении концентрации носителей заряда, что приводит к соответствующему изменению электрической проводимости [4]. На этом принципе работают полупроводниковые терморезисторы. В качестве полупровод-
никовых датчиков температуры также используются диоды и транзисторы, где изменение концентрации носителей заряда приводит к изменению тока, протекающего через полупроводниковый прибор [4].
4.1. Датчики температуры на основе диодов и транзисторов.
В датчиках температуры на основе диодов и транзисторов используют зависимость параметров p-n перехода в полупроводнике от температуры.
Исторически первым температурозависимым параметром был обратный ток диодов и транзисторов. Значение тока растет с температурой по экспоненциальному закону со скоростью порядка 10%. К-1 . Однако, диапазон температур, в пределах которых возможно использование обратных токов, весьма ограничен. Верхний температурный предел применения определяется температурой их теплового пробоя.
Наибольшее распространение получило использование прямых параметров диодов и транзисторов [5]. Их существенными преимуществами перед обратными являются линейность температурной зависимости, широкий диапазон рабочих температур, высокая стабильность. Чаще всего для измерения температуры используется прямое напряжение на p-n переходе при почти постоянном токе эмиттера. Изменение прямого напряжения составляет порядка 2,5 мВ. К-1 . При повышении температуры транзисторов p-n-p типа напряжение эмиттер-база из области положительных значений переходит в область отрицательных.
Так например, датчик TS-560, разработанный ФТИ им. А.Ф.Иоффе РАН (г.Санкт-Петербург) представляет собой полупроводниковый диод на основе арсенида галлия. Диапазон измерения такого датчика (4,2…500) К, основная погрешность ±0,1%, чувствительность (2…3) мВ/К, габаритные размеры 3´3 мм [2].
Известны случаи использования в качестве температурозависимого параметра коэффициента усиления по току на низких и высоких частотах [5]. Однако невысокая чувствительность коэффициента усиления к температуре и его зависимость от предыстории, а также необходимость индивидуальной градуировки во всем диапазоне рабочих температур ограничивают применение этого параметра при создании термодатчиков.
На основе транзисторов, эмиттерный переход которых включен в одно из плеч моста, созданы термодатчики типа ТЭТ-1, ТЭТ-2 [5]. Первый тип используется для измерения температуры в полевых условиях в диапазоне (-10…+40) °С с основной погрешностью не более ±1 К, второй – в диапазоне (-40…+80) °С с погрешностью не более (0,3…2) К.
Температурные пределы применимости транзисторов в термодатчиках значительно шире, чем при использовании транзисторов по прямому назначению. Ограничение применимости со стороны высоких температур наступает вследствие перехода примесного полупроводника в собственный, уменьшения пробивного напряжения и повышения генерации носителей в базовой области при отрицательных напряжениях. Применимость при низких температурах определяется уменьшением концентрации основных носителей из-за дезактивации легирующих примесей и уменьшения коэффициента усиления по току.