Реферат: Полупроводниковые датчики температуры

- достаточно большое значение показателя термической инерции из-за необходимости размещения полупроводниковых чувствительных элементов в корпусах для их защиты от окружающей среды и обеспечения электрической изоляции от объекта.

Кроме того, процесс сборки термодатчиков такого типа трудно поддается автоматизации и, как правило, осуществляется с использованием большой доли ручного труда.

4.3. Пленочные полупроводниковые датчики температуры.

Улучшение характеристик полупроводниковых датчиков температуры и упрощение их конструкции может быть достигнуто при использовании чувстви­тельных элементов, изготовленных из тонких пленок полупроводника, нанесен­ного на полупроводниковую или диэлектрическую подложку. Изготовление таких датчиков осуществляется массовыми методами планарной технологии, которые обеспечивают получение значений номинальных сопротивлений с достаточно высокой точностью и, кроме того, позволяют использовать при изготовлении лазерные методы подгонки номинальных сопротивлений.

Основным недостатком датчиков на основе автоэпитаксиальных структур «кремний на кремнии», а также на основе чувствительных элементов с диффу­зи­онными кремниевыми тензорезисторами является низкий верхний предел рабочих температур, что обусловлено резким ухудшением изолирующих свойств p-n пе­рехода при температурах более (410…430) К [18].

Большие возможности по дальнейшему совершенствованию пленочных термодатчиков возникли с появлением в серийном производстве гетероэпитакси­альных структур «кремний на сапфире» (КНС), которые представляют собой тонкую (от долей до нескольких микрометров) пленку монокристаллического кремния, выращенную на подложке из монокристаллического сапфира [19]. Использование структур КНС позволяет создавать термодатчики, характеризу­ющиеся сочетанием достоинств датчиков с монокристаллическими и пленочными кремниевыми чувствительными элементами. Применение монокристаллической пленки кремния для изготовления терморезисторов обеспечивает повышенную стабильность характеристик термодатчиков. Хорошие изолирующие свойства сапфира вплоть до температур около 1300 К позволяют создавать термодатчики, верхний предел рабочих температур которых, в принципе, ограничен только физическими свойствами кремния. Высокий коэффициент теплопроводности сапфира способствует снижению показателя тепловой инерции термодатчика.

В настоящее время на основе чувствительных элементов из КНС-структур разработан ряд термодатчиков. Так датчик температуры ТЭЭ-295, разработанный в НПО измерительной техники г.Королев, работает в диапазоне температур от 73 до 473 К и имеет основную погрешность 0,25% [2].

В Государственном научном центре «НИИТЕПЛОПРИБОР» были раз­ра­ботаны аналогичные датчики с термочувствительными элементами ТЭ-1 и ТЭ-2, работающие в диапазоне температур от 73 до 723 К и имеющие погрешность 0,25% и выходной сигнал (4…20) мА [20]. В этих датчиках линеаризация выход­ного сигнала осуществлялась с помощью одного или двух термонезависимых резисторов, в зависимости от способа питания – от генератора тока или гене­ра­тора напряжения (рис.6).

Для получения унифицированного выходного сигнала использован элек­тронный преобразователь. Структурная электрическая схема датчика с чувстви­тельным элементом модели ТЭ-2 с двумя терморезисторами, в которую включены два термонезависимых резистора, показана на рис.6а. Мостовая схема питается от стабилизированного источника постоянного напряжения 4В. Информативный сигнал в виде разности напряжений DU на измерительной диагонали моста, пропорциональный изменению сопротивлений термочувствительных резисторов, поступает на вход дифференциального усилителя электронного преобразователя датчика и преобразуется в стандартный сигнал постоянного тока (4…20) мА.

Рис.6. Структурная электрическая схема датчика температуры с двумя (а) и

одним (б) терморезисторами.

В диапазоне измерения температур от t1 до t2 термочувствительный мост ба­лан­сируется внешним потенциометром (на рис. не показан) таким образом, чтобы нижнему значению t1 измеряемой температуры соответствовало начальное зна­чение 4 мА выходного сигнала датчика. Настройкой коэффициента усиления диф­ференциального усилителя датчика обеспечивается соответствие величины 20 мА выходного сигнала значению t2 верхнего предела измерений температуры.

На рис. 6б показана электрическая схема датчика температуры, реализованная на базе чувствительного элемента ТЭ-1 с одним терморезистором. В этом случае терморезистор R(t) вместе с линеаризующим шунтом Rp включены в цепь питания от стабилизированного источника постоянного тока 0,8 мА. Тер­мо­независимый резистор R включен в цепь питания от другого стабилизи­рован­ного источника постоянного тока 0,8 мА. Разность падения напряжения DU на этих резисторах, пропорциональная величине измеряемой температуры, посту­пает на вход дифференциального усилителя датчика и затем преобразуется в стандартный выходной сигнал постоянного тока (4…20) мА.

5. ЗАКЛЮЧЕНИЕ

Анализ литературных источников позволяет сделать вывод о все более широком использовании в системах регулирования полупроводниковых датчиков температуры, разнообразие которых позволяет решить множество сложных задач. Появившиеся в последнее время датчики на изолирующих подложках типа КНС-структур позволяют во многих специфических случаях заменить традиционные металлические (например платиновые) датчики и тем самым удешевить изме­ре­ния и повысить надежность систем.

6. СПИСОК ЛИТЕРАТУРЫ

1. Трофимов Н.А., Лаппо В.В. Измерение параметров теплофизических процессов в ядерной энергетике.- М.: Атомиздат, 1979.

2. Датчики теплофизических и механических параметров. Справочник, т.1, кн.1/ Под общ.ред. Коптева Ю.Н., под ред. Багдатьева Е.Е., Гориша А.В., Малкова Я.В.- М.: ИПЖР, 1998.

3. Виглеб Г. Датчики. М.: Мир, 1989.

4. Федотов Я.А. Основы физики полупроводниковых приборов. М.: Сов.радио, 1969.

5. Фогельсон И.Б. Транзисторные термодатчики. М.: Сов.радио, 1972.

6. Гордов А.Н., Жагулло О.М., Иванова А.Г. Основы температурных измерений. М.: Энергоатомиздат, 1992.

7. Шефтель И.Т. Терморезисторы. М.: Наука, 1973.

8. Орлова М.П. Низкотемпературная термометрия. М.: Изд.стандартов, 1975.

9. Зарубин Л.И., Немиш Ю.И. Полупроводниковая криогенная термометрия. Обзор в кн. Полупроводниковая техника и микроэлектроника. Киев: Наукова думка, 1974, вып.16.

10. Вайнберг В.В., Воробкало Ф.М., Зарубин Л.И. Полупроводниковый материал для термометров сопротивления на диапазон (14…300) К. Полупроводниковая техника и микроэлектроника, Киев, 1979, вып.30.

11. Зи С. Физика полупроводниковых приборов. Кн.1, М.: Мир, 1984.

12. Велшек Я. Измерение низких температур электрическими методами. М.: Энергия, 1980.

13. Милнс А. Примеси с глубокими уровнями в полупроводниках. М.: Мир, 1977.

К-во Просмотров: 2846
Бесплатно скачать Реферат: Полупроводниковые датчики температуры