Реферат: Понятие рядов распределения. Дискретные и интервальные ряды распределения
Рядами распределения называются группировки особого вида, при которых по каждому признаку, группе признаков или классу признаков известны численность единиц в группе либо удельный вес этой численности в общем итоге. Т.е. ряд распределения – упорядоченная совокупность значений признака, расположенных в порядке возрастания или убывания с соответствующими им весами. Ряды распределения могут быть построены или по количественному, или по атрибутивному признаку.
Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Они бывают дискретные и интервальные . Ряд распределения может быть построен по не прерывно варьирующему признаку (когда признак может принимать любые значения в рамках какого-либо интервала) и по дискретно варьирующему признаку (принимает строго определенные целочисленные значения).
Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов с соответствующими им частотами или частностями. Варианты дискретного ряда – это дискретно прерывно изменяющиеся значения признак, обычно это результат подсчета.
Дискретные вариационные ряды строят обычно в том случае, если значения изучаемого признака могут отличаться друг от друга не менее чем на некоторую конечную величину. В дискретных рядах задаются точечные значения признака. Пример : Распределение мужских костюмов, реализованных магазинами за месяц по размерам.
Размер костюма | Число проданных костюмов, шт. |
44 | 12 |
46 | 31 |
48 | 127 |
50 | 215 |
52 | 164 |
54 | 91 |
56 | 47 |
58 | 28 |
60 | 11 |
Итого | 726 |
Интервальным вариационным рядомназывается упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины. Интервальные ряды предназначены для анализа распределения непрерывно изменяющегося признака, значение которого чаще всего регистрируется путем измерения или взвешивания. Варианты такого ряда – это группировка.
Пример : Распределение покупок в продуктовом магазине по сумме.
Сумма покупки, руб. | Число покупок |
До 50 | 37 |
50,1-100 | 78 |
100,1-150 | 111 |
150,1-200 | 105 |
200,1-250 | 68 |
Свыше 250 | 49 |
Итого | 448 |
Если в дискретных вариационных рядах частотная характеристика относится непосредственно к варианту ряда, то в интервальных к группе вариантов.
Ряды распределения удобно анализировать при помощи их графического изображения, позволяющего судить и о форме распределения, о закономерностях. Дискретный ряд изображается на графике в виде ломаной линии – полигона распределения . Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладываются ранжированные (упорядоченные) значения варьирующего признака, а по оси ординат наносится шкала для выражения частот.
Интервальные ряды изображаются в виде гистограмм распределения (то есть столбиков диаграмм).
При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам.
Любая гистограмма может быть преобразована в полигон распределений, для этого необходимо соединить между собой отрезками прямой вершины ее прямоугольников.
2. Индексный метод анализа влияния средней выработки и среднесписочной численности на изменения объема продукции
Индексный метод применяется для анализа динамики и сравнения обобщающих показателей, а так же факторов, влияющих на изменение уровней этих показателей. С помощью индексов можно выявить влияние средней выработки и среднесписочной численности на изменения объема продукции. Эта задача решается путем построения системы аналитических индексов.
Индекс объема продукции с индексом среднесписочной численности работающих и индексом средней выработки связан таким же образом, как объем производства (Q) связан с выработкой (w) и численностью (r) .
Можно заключить, что объем продукции будет равняться произведению средней выработки и среднесписочной численности:
Q = w·r, где Q – объем продукции,
w - средняя выработка,
r – среднесписочная численность.
Как видно, речь идет о взаимосвязи явлений в статике: произведение двух факторов дает общий объем результативного явления. Очевидно также, что эта связь функциональная, следовательно, динамика этой связи изучается с помощью индексов. Для приведенного примера это следующая система:
Jw × Jr = Jwr .
Например, индекс объема продукции Jwr, как индекс результативного явления, можно разложить на два индекса-фактора: индекс средней выработки (Jw), и индекс среднесписочной численности (Jr):
↓ ↓ ↓
Индекс Индекс Индекс
объема средней среднесписочной
продукции выработки численности
где J w - индекс производительности труда, рассчитываемый по формуле Ласпейреса;
Jr - индекс численности работающих, рассчитываемый по формуле Пааше.
Индексные системы используются для определения влияния отдельных факторов на формирование уровня результативного показателя, позволяют по 2-м известным значениям индексов определить значение неизвестного.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--