Реферат: Понятие времени и проблема континуума (к истории вопроса)

Мысль Сагредо ясна: в противном случае мы окажемся перед парадоксом Зенона: как бы малы ни были составляющие элементы, но если они имеют конечную величину, то бесконечное их число в сумме даст величину бесконечную – неважно, идет ли речь о массе металла, длине линии или величине скорости. На этом принципе стояла как античная математика, так и античная физика. Но именно этот принцип и хочет оспорить Галилей. Вот ответ Сальвиати на соображения Сагредо: «В противном случае – что же? Раз мы уже дошли до парадоксов, то попробуем, нельзя ли каким-либо образом доказать, что в некоторой конечной непрерывной величине может существовать бесконечное множество пустот» [12, c. 132]. Доказательство Галилея состоит в допущении тождества круга и многоугольника с бесконечным числом сторон, т.е. образований, с точки зрения античной математики, не могущих иметь между собой никакого отношения. Именно предельный переход от многоугольника к кругу путем допущения многоугольника с актуально бесконечным числом сторон составляет основание вводимого Галилеем метода инфинитеэимального исчисления. Использование актуально бесконечного в математике, по мнению Галилея, расширяет возможности последней. Именно Галилей пользуется понятием неделимого, на основе которого строит затем геометрию неделимых его ученик Кавальери6. Эти неделимые Галилей именует «неконечными частями линии», «неделимыми пустотами», «атомами». Природа их парадоксальна, противоречива: они не являются ни конечными величинами, ни «нулями». Из них-то, по Галилею, и состоит непрерывная величина.

Характерно, что в XVIII в., когда бурно обсуждалась природа этой самой «бесконечно малой», Вольтер со свойственным ему остроумием определил математический анализ как «искусство считать и точно измерять то, существование чего непостижимо для разума» (цит. по: [13, c. 176]).

Галилей, вводя понятие «бесконечного числа бесконечно малых», принимает таким образом в качестве предпосылки актуальную бесконечность, которой избегала античная математика, как и античная физика.

Вслед за Галилеем Кавальери, принимая те же предпосылки, предложил метод составления непрерывного из неделимых. При этом характерно название работы Кавальери: «Геометрия, изложенная новым способом при помощи неделимых непрерывного» (первое ее издание вышло в 1635 г.). Название полемично по отношению к принципу отношений Евдокса–Архимеда, как и к принципу непрерывности Аристотеля, который в ХШ в. кратко сформулировал Фома Аквинский: «Ничто непрерывное не может состоять из неделимых» (цит. по: [14, S. 191]). Каким образом непрерывное составлено из неделимых, Кавальери поясняет, в частности, в предложении ХХХV второй книги «Геометрии»: «Построенный на каком-либо прямоугольнике параллелепипед, высотой которого служит некоторая прямая линия, равен (сумме) параллелепипедов, имеющих основаниями тот же прямоугольник, а высотами какие угодно части, на которые может быть разделена высота. Если же представим себе, что прямоугольник, служащий основанием, разделен каким угодно образом на какое угодно число прямоугольников, то, указанный параллелепипед будет равен (сумме) параллелепипедов, имеющих высотами отдельные части высоты, а основанием – отдельные части основания» [15, c. 277]. Плоская фигура мыслится, таким образом, как совокупность всех линий, а тело – как сумма всех его плоскостей.

Интересно разъяснение, которое дает Кавальери новому методу, прямо указывая на то, что ему не ясна природа «неделимого», с помощью которого он «составляет» геометрические объекты, а потому не ясна и сущность самого «составления»: «Я пользовался тем же приемом, каким пользуются алгебраисты для решения предлагаемых им задач: хотя бы корни чисел были неопределимы, непостижимы и неизвестны, они их тем не менее складывают вместе, вычитают, умножают и делят и, если только они окажутся в состоянии получить в результате этих манипуляций нужное им решение предложенной задачи, они считают, что достигли цели. Как раз так же я оперирую с совокупностью линий или плоскостей: пусть они, поскольку речь идет об их числе, неопределимы и неизвестны; поскольку речь идет об их величине, они ограничены всякому видными пределами» [15, с. 89]. Кавальери сознает, что понятие актуальной бесконечности, с которым оперирует геометрия неделимых, порождает «сомнения, связанные с опасностью плавания у скал этой бесконечности» [15, с. 91]. Это сознание, как и та критика, которой подверглось понятие континуума как «совокупности неделимых» со стороны современников Кавальери7, заставили его в седьмой книге «Геометрии» уточнить метод, примененный им в первых шести книгах. Если первоначально Кавальери сравнивал между собой совокупность всех линий одной плоской фигуры с совокупностью всех линий другой (аналогично – и плоскостей, из которых составлены тела), то в седьмой книге он сравнивал любую линию одной фигуры с соответствующей линией другой, или одну плоскость одной фигуры тела с плоскостью другого. Таким путем он избегал необходимости оперировать понятиями «все линии» и «все плоскости». Поясняя свое ограничение, Кавальери писал: «Мы намеревались доказать лишь то, что отношение между континуумами соответствует отношению между неделимыми и наоборот» [17, p. 2].

Самое удивительное однако состоит в том, что одним из критиков Кавальери оказался также и... Галилей, сам, как мы знаем, предлагавший составлять непрерывное из бесконечно большого числа неделимых! Из переписки Кавальери известно, что Галилей не хотел признать правомерности понятий «все плоскости данного тела» и «все линии данной плоскости». Это кажется неожиданным, если мы вспомним, что Галилей допускал «строение континуума из абсолютно неделимых атомов» [12, с. 154], хотя и не мог разъяснить природу этих неделимых8. Как мы уже выше могли видеть, Галилей рассуждал о неделимых не только с точки зрения математической, но и как физик. Размышляя о природе континуума в работе «Разные мысли», Галилей утверждает: «Бесконечность должна быть вовсе исключена из математических рассуждений, так как при переходе к бесконечности количественное изменение переходит в качественное, подобно тому, как, если мы будем самой тонкой пилой размельчать тело, то как бы мелки ни были опилки, каждая частица имеет известную величину, но при бесконечном размельчении получится уже не порошок, а жидкость, нечто качественно новое, причем отдельные частицы вовсе исчезнут» (цит. по: [18, с. 37]).

В чем тут дело? Почему Галилей то допускает понятие актуальной бесконечности, то запрещает его? Почему он критикует Кавальери за метод, каким пользовался сам? Вот что думает по этому поводу С.Я. Лурье, переводчик «Геометрии» Кавальери и автор предисловия к переводу: «Галилей вообще не выставил никакой связной математической теории неделимых: стоя на атомистической точке зрения (непрерывное состоит из неделимых, линия состоит из точек), он в то же время видел логические несообразности, к которым приводила эта теория; компромисс Кавальери его не удовлетворял, он не хотел понять Кавальери, чувствовал, что математический атомизм необходим для дальнейшего прогресса математики, но не знал, как сделать его теоретически приемлемым» [18, с. 39]. Вероятно, С.Я. Лурье здесь недалек от истины, хотя его утверждение о том, что Галилей в своем учении о неделимых следует Демокриту, вряд ли можно принять без оговорок. Галилей пытается найти объединение физического атомизма Демокрита с математическим атомизмом, которого у Демокрита не было, а потому опирается скорее на Архимеда9. Но позиция его в этом вопросе с психологической точки зрения очень показательна; то, что он позволяет себе, хотя и не без некоторых оговорок, крайне раздражает его у другого: тут с особой ясностью ему видны логические противоречия, связанные с понятием актуальной бесконечности, в частности – с бесконечно малым. Как бы то ни было, очевидно одно: Галилею не удалось удовлетворительно разрешить проблему континуума на пути, отличном от евклидовско-аристотелевского, и он, критикуя Кавальери, вынужден признать, что вместе с неделимым в математику входят неразрешимые парадоксы.

Попытки преодолеть парадоксы бесконечного: Декарт, Ньютон, Лейбниц

Не удивительно, что Декарт, признавая принцип непрерывности не только в математике, но и в физике, возвращается в этом пункте к Аристотелю. «Невозможно, – пишет Декарт, – существование каких-либо атомов, т.е. частей материи, неделимых по своей природе, как это вообразили некоторые философы» [19, с. 475]. Соответственно Декарт не допускает в научный обиход и понятие актуально бесконечного. Актуально бесконечен, по Декарту, лишь Бог, но именно потому он и непознаваем. Ведь познание, говорит Декарт, следуя здесь античной традиции, есть полагание предела, границы. «Мы никогда не станем вступать в споры о бесконечном, тем более что нелепо было бы нам, существам конечным, пытаться определить что-либо относительно бесконечного и полагать ему границы, стараясь постичь его. Вот почему мы не сочтем нужным отвечать тому, кто спрашивает, бесконечна ли половина бесконечной линии, или бесконечное число четное или нечетное и т.д. О подобн

К-во Просмотров: 159
Бесплатно скачать Реферат: Понятие времени и проблема континуума (к истории вопроса)