Реферат: Порошковая металлургия
При вращении барабана шары поднимаются вследствие трения на
некоторую высоту и поэтому возможно несколько режимов измель-
чения: 1) скольжения, 2) перекатывания, 3) свободного падения,
4) движения шаров при критической скорости вращения барабана.
В случае скольжения шаров по внутренней поверхности вращающегося барабана материал истирается между стенкой барабана и внешней поверхностью массы шаров, ведущей себя как единое целое. При увеличении частоты вращения шары поднимаются и скатываются по наклонной поверхности и измельчение происходит между поверхностями трущихся шаров. Рабочая поверхность истирания в этом случае во много роз больше и поэтому происходит более ин-тенсивное истирание материала, чем а первом случае. При большей частоте вращения шары поднимаются до наибольшей высоты и падая вниз (рис. 1,а), производят дробящее действие, дополняемое истиранием материала между перекатывающимися шарами. Это наиболее интенсивный размол. При дальнейшем увеличении частоты вращения шары вращаются вместе с барабаном мельницы, а измельчение при этом практически прекращается.
Интенсивность измельчения определяется свойствами материала, соотношением рабочих размеров - диаметра и длины барабана, соотношением между массой и размерами размольных тел и из-мельчаемого материала. При D:L=3...5 ( D - диаметр, L- длина барабана) преобладает дробящее действие, при D:L<3 - истирающее действие; для измельчения пластичных металлов это соотношение должно быть меньше трех.Масса размольных тел считается оптимальной при 1,7...2 кг размольных тел на 1 л объема бара-бана. Соотношение между массой размольных тел и измельчаемого материала составляет 2,5...3. Для интенсивного измельчения это соотношение увеличивают.Диаметр размольных шаров не должен превышать 1/20 диаметра мельницы. Для увеличения интенсивности измельчения процесс проводят в жидкой среде, препятствующей распылению материала и слипанию частичек. Количество жидкости составляет 0,4 л на 1кг размалываемого материала. Длительность измельчения:от нескольких часов до нескольких суток. В производстве используют несколько типов шаровых мельниц. В различных типах шаровых мельниц соотношение средних размеров частиц порошка до и после измельчения, называемое степенью измельчения , составляет 50. . . 100.
При более высокой частоте воздействия внешних сил на частицы материала применяют вибрационные мельницы (рис. 2). В таких мельницах воздействие на материал заключается я создании сжимающих и срезывающих усилий переменной величины, что создает усталостное разрушение порошковых частиц. В показанной на рис, 2 мельнице дисбалансный вал - вибратор 2, вращающийся с частотой 1000-3000об/мин при амплитуде 2...4 мм вызывает круговые движения корпуса 1 мельницы с размольными телами и измельчаемым материалом. В этом случае измельчение протекает интенсивнее, чем в шаровых мельницах.
Тонкое измельчение трудноразмалываемых материалов часто выполняют на планетарных центробежных мельницах с шарами, используемыми для размола. По сравнению с шаровыми мельницами в планетарных центробежных мельницах, размол в сотни раз интенсивнее и одновременно в несколько раз менее производителен, так эта мельница периодического, но не непрерывного (как шаровая) действия с ограниченной загрузкой измельчаемого материала.
Для размола пластичных материалов используют процесс измельчения, я котором разрушающие удары наносят сами частицы измельчаемого материала. Для этого используют вихревые мельни-цы.
Распыление и грануляция жидких металлов является наиболее простым и дешевым способом изготовления порошков металлов с температурой плавления до1600 С: алюминия, железа, сталей, меди, цинка, свинца, никеля и других металлов и сплавов.
Сущность измельчения расплава состоит в дроблении струи расплава либо высокоэнергонасыщенным газом или жидкостью, либо механическим распылением, либо сливанием струи расплава жидкую среду (например воду). Из многих вариантов наиболее широко применяется схема распыления металлов, представленная на рис. 3, Основной частью технологического узла является форсунка.
Для распыления металл плавят в электропечах.В зависимости от свойств расплава и требований к качеству порошке распыление осуществляют воздухом, азотом, аргоном, гелием, а для защиты от окисления - инертным газом. Распыление воздухом - самый экономичный способ изготовления порошков. Основные параметры процесса распыления:давление и температура газового потока, температура расплава. Охлаждающей средой для распыленной струи может быть вода, газ, органическая жидкость.
При различных условиях распыления получают частички порошка каплеобразной, шарообразной и других форм. Размеры частиц получают от 1 мм до сотых долей миллиметра.
Химико-металлургический метод
Восстановление металлов из окислов и солей. Простейшая реакция восстановления может быть представлена так:
МеА+Х=Ме+ХА+-Q
где Ме - любой металл, А - неметаллическая составляющая (кис-
лород, хлор, фтор, солевой остаток и др.) восстанавливаемого
химического соединения металла, Х - восстановитель, Q - тепло-
вой эффект реакции
Стрелки показывают возможное одновременное существование соединений восстанавлиаемого металла в восстановителя и возможное повторное образование исходного соединения МеА. Восстано-вителем может быть то вещество, которое при выбранной температуре процесса имеет большее ритмическое сродство к неметаллической составляющей восстанавливаемого соединения, чем получаемый. В качестве восстановителей используют - водород, окись углерода, диссоциированный аммиак, конвертированный природный газ,эндотермический и природные газы, кокс, термоштыб и древесный уголь, металлы (кальций, магний , алюминий, натрий,кадмий идр.). Прочность химической связи соединения МеА и образующегося соединения восстановителя ХА позволяет оценить возможность протекания реакции восстановления. Количественной мерой (“мерой химического сродства”) является величина свободной энергии, высвобождающейся при образовании соответствующего химического соединения. Чем больше выделяется энергии, тем прочнее химическое соединение.Иными словами реакция восстановления возможна в том случае, когда при соединении восстановителя ХА выделяется энергии больше, чем при образовании соединения металла МеА по реакции Ме+А=МеА . В реакции восстановления всегда должна выделяться тепловая энергия.
Технологическая практика производства порошков восстановлением. Железные порошки получают восстановлением окисленной руды или прокатной окалины.Железо в указанных материалах находится а виде окислов: Fe2 O3,Fe3 O4,FeO - окиси, закись - окиси и закиси железа. Существующие методы восстановления окислов же-леза разнообразны.
Классификационная схема методов восстановления железа представлена на рис.4.
Восстановление окислов железа.
_________________________________________________________________________
Твердым углеродом Газом Комбинированным способом
_____________________________________________________________________________