Реферат: Практические задачи по ТОУЭС
Функция достигает максимума в x(2) (0, 2, 0, 1).
5. Решить графически задачу линейного программирования:
f (x) = 2 x1 + 4 x2 –> min
x1 + 2 x2 £ 5
3 x1 + x2 ³ 5
0 £ x1 £ 4 0 £ x2 £ 4
Найдем множество решений неравенств:
х1 + 2 х2 £ 5, если х1 = 0, то х2 £ 2,5
если х2 = 0, то х1 £ 5 точки прямой 1: (0; 2,5) и (5; 0)
3 х1 + х2 ³ 5, если х1 = 0, то х2 ³ 5
если х2 = 0, то х1 ³ 1, 67 точки прямой 2: (0; 5) и (1,67; 0)
Найдем координаты точек A, B, C, D:
A (1,67; 0) и D (4; 0) – из неравенств
B (1; 2) как точка пересечения прямых из системы
С (4; 0,5) – x1 = 4 из неравенства x1 <4, а x2 из уравнения 4 + 2 x2 = 5
Вычислим значение функции в этих точках:
A: f (x) = 2 * 1,67 + 4 * 0 = 3,33
B: f (x) = 2 * 1 + 4 * 2 = 10
C: f (x) = 2 * 4 + 4 * 0,5 = 10
D: f (x) =2 * 4 + 4 * 0 = 8
Функция принимает минимальное значение в точке A (1,67; 0).
6. Решить задачу
Механический завод при изготовлении 3-х разных деталей использует токарный, фрезерный и строгальный станки. при этом обработку каждой детали можно вести 2-мя разными способами. В таблице указаны ресурсы времени каждой группы станков, нормы времени при обработке детали на соответствующем станке по данному технологическому способу и прибыль от выпуска единицы детали каждого вида.
Норма времени, станко/час | Ресурсы времени | ||||||
Станок | I деталь | II деталь | III деталь | ||||
1 | 2 | 1 | 2 | 1 | 2 | ||
Токарный | 0,4 | 0,9 | 0,5 | 0,5 | 0,7 | – | 250 |
Фрезерный | 0,5 | – | 0,6 | 0,2 | 0,3 | 1,4 | 450 |
Строгальный | 0,3 | 0,5 | 0,4 | 1,5 | – | 1,0 | 600 |
Прибыль | 12 | 18 | 30 |
Определить производственную программу, обеспечивающую максимальную прибыль.
Решение:
Пусть x1, x2, x3 – загрузка станков.
Таким образом 0 £ x1 £ 250;
0 £ x2 £ 450;
0 £ x3 £ 600.
При первом способе технологической обработки получаем:
0,4 x1 + 0,5 x2 + 0,7 x3 £ 250