Реферат: Представление знаний в информационных системах

Однослойный персептрон

отдельный персептронный нейрон вычисляет взвешенную сумму элементов входного сигнала, вычитает значение смещения и пропускает результат через жесткую пороговую функцию, выход которой равен +1 или -1 в зависимости от принадлежности входного сигнала к одному из двух классов

распознавание образов, классификация

программные или аппаратные реализации модели очень просты. Простой и быстрый алгоритм обучения

простые разделяющие поверхности (гиперплоскости) дают возможность решать лишь несложные задачи распознавания

Многослойный персептрон с обучением по методу обратного распространения ошибки

используется алгоритм обратного распространения ошибки. Тип входных сигналов – целые и действительные, тип выходных сигналов – действительные из интервала, заданного передаточной функцией нейронов. Тип передаточной функции – сигмоидальная

распознавание образов, классификация, прогнозирование, распознавание речи. Контроль, адаптивное управление, построение экспертных систем

первый эффективный алгоритм обучения многослойных нейронных сетей

этот метод относится к алгоритмам с минимальной скоростью сходимости. Для увеличения скорости сходимости необходимо использовать матрицы вторых производных функции ошибки

Сеть Хопфилда

используется как автоассоциативная память. Исходные данные – векторы-образцы классов. Выход каждого из нейронов подаётся на вход всех остальных нейронов.

Тип входных и выходных сигналов – биполярные. Тип передаточной функции – жёсткая пороговая.

ассоциативная память, адресуемая по содержанию, распознавание образов, задачи оптимизации(в том числе, комбинаторной оптимизации).

позволяет восстановить искажённые сигналы

размерность и тип входных сигналов совпадают с размерностью и типом выходных сигналов. Это существенно ограничивает применение сети в задачах распознавания образов. При использовании сильно коррелированных векторов-образцов возможно зацикливание сети в процессе функционирования. Небольшая ёмкость, квадратичный рост числа синапсов при увеличении размерности входного сигнала

Сети Ворда

обычная трехслойная сеть с обратным распространением ошибки с разными передаточными функциями в блоках скрытого слоя

Классифика-ция

обучение, хорошее обобщение на зашумленных данных

Сети Кохонена

сеть состоит из М нейронов, образующих прямоугольную решетку на плоскости. Элементы входных сигналов подаются на входы всех нейронов сети. В процессе работы алгоритма настраиваются синаптические веса нейронов. Входные сигналы (вектора действительных чисел) последовательно предъявляются сети, при этом требуемые выходные сигналы не определяются. После предъявления достаточного числа входных векторов, синаптические веса сети определяют кластеры. Кроме того, веса организуются так, что топологически близкие нейроны чувствительны к похожим входным сигналам

кластерный анализ, распознавание образов, классификация

сеть может быть использована для кластерного анализа только в случае, если заранее известно число кластеров

способна функционировать в условиях помех, так как число классов фиксировано, веса модифицируются медленно, и настройка весов заканчивается после обучения

Двунаправленная ассоциативная память

является гетероассоциативной. Входной вектор поступает на один набор нейронов, а соответствующий выходной вектор вырабатывается на другом наборе нейронов. Входные образы ассоциируются с выходными

ассоциативная память, распознавание образов

сеть может строить ассоциации между входными и выходными векторами, имеющими разные размерности

К-во Просмотров: 369
Бесплатно скачать Реферат: Представление знаний в информационных системах