Реферат: Прямой цикл Карно и тепловая изоляция
Днепропетровский Государственный Технический Университет Железнодорожного Транспорта.
Кафедра : «Теплотехника»
ДОМАШНЕЕ ЗАДАНИЕ
На тему : «Прямой цикл Карно» ,
«Тепловая изоляция»
Выполнил :
студент 427 группы
Астраханцев Дмитрий
Принял :
Доц. Арестов А.П.
Днепропетровск 1998
Прямой цикл Карно.
Как известно, все тепловые двигатели, превращающие тепловую энергию в механическую, работают по круговым циклам или термодинамическим циклам – идеальный цикл теплового двигателя (прямой цикл Карно) и цикл холодильной машины (обратный цикл Карно).
Рассмотрим прямой цикл Карно. Для этой цели возьмем идеальную систему, состоящую из горячего источника тепла, рабочего тела и окружающей среды. Параметры источника тепла Тг, Sг, температура окружающей среды Т0 . Рабочее тело в конечном итоге не совершает работы за счет своей собственной энергии. До начала работы и после ее завершения все параметры рабочего тела и его полная энергия остаются в точности теми же самыми. Иначе говоря, рабочее тело изменяет свои параметры по какому-то циклу, возвращаясь каждый раз в первоначальное состояние. Суммарная работа окружающей среды над телом равна нулю; никаких потерь работы нет; энтропия системы остается неизменной (Sc=0); все процессы обратимые.
При отдаче горячим источником рабочему телу тепла dQ1 тело произведет суммарную работу dL и, для того чтобы вернутся в первоначальное состояние, отдаст окружающей среде тепло dQ2. При этом энтропия горячего источника уменьшится на величину dSг = dQ1 /T1 , а энтропия холодного источника возрастет на dSx = dQ2 /T0 .
Поскольку согласно второму закону термодинамики энтропия рассматриваемой изолированной системы уменьшаться не может, то при dSг < 0 всегда будет dSx > 0, а следовательно, и dQ2 > 0. Значит, совершая работу с помощью циклов, тепло должно не только подводится, но и обязательно отводиться.
В идеальном случае, когда достигается максимальная работа, dSг + dSx = 0 и величина dQ2 является минимальной. Таким образом,
-dQ1 /Tг = dQ2 min /T0 ,
или
dQ2 min = T0 dSг ,
где dSг берется по абсолютной величине (без отрицательного знака), т.е. dSг = dQ1 /Tг.
Согласно первому закону термодинамики, всегда
dL = dQ1 – dQ2 ,
dLmax = dQ1 – dQ2 min ,
или
dLmax = dQ1 – T0 dSг,
т.е. максимальная работа цикла за счет тепла Q
Lmax = Q1 – T0 (Sг2 – Sг1 ),
где (Sг2 – Sг1 ) – абсолютна величина уменьшения энтропии горячего источника, вызванная отдачей тепла Q1 .
Очевидно, что эта формула будет справедлива независимо от того, меняется или не меняется температура Тг горячего источника. Обязательными условиями ее справедливости являются только постоянство температуры окружающей среды и обратимость всех процессов цикла. Максимальная полезная работа, которая может быть совершена в идеальном (обратимом) тепловом двигателе, оказывается абсолютно одинаковой, будет ли этот двигатель работать по какому-либо обратимому циклу или в нем будут совершаться любые разомкнутые процессы.
Максимальная доля тепла, которая может быть превращена в работу, обычно выражается через отношение Lmax /Q1 , называемое термическим к. п. д. теплового двигателя :
t = Lmax /Q1 = (Q1 – Q2min )/Q1 .
При постоянных температурах горячего Тг и холодного Т0 источников, учитывая предыдущие формулы максимальный термический к. п. д. теплового двигателя :
t =1 – Т0 /Тг.
Можно доказать, что значение максимальной работы, а следовательно, и максимальный термический к. п. д. для случая источников тепла постоянной температуры достигается в обратимом прямом цикле Карно, состоящем из двух изотерм и двух адиабат :
Условия построения прямого цикла Карно следующие :
1) Поскольку подвод тепла обратимый, то при Тг = const температура тела Т1 на протяжении всего процесса подвода тепла должна быть равной Тг и оставаться постоянной : Т1 = Тг=const;
2) Так как и отвод тепла должен быть обязательно обратимым, то и температура Т2 тела в процессе отвода тепла также должна быть равна Т0 и оставаться постоянной : Т2 = Т0 =const;
3) Поскольку в других процессах тепло не должно подводиться и отводиться, то замыкание цикла может осуществляться только процессами с постоянной энтропией (S = const), следовательно, должно быть : Sa = Sb и Sc = Sd .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--