Реферат: Прямые методы решения систем линейных алгебраических уравнений

Реферат з курсу “ Введение в численные методы

Тема: “ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ”

Содержание

1. Метод последовательных приближений

2. Метод Гаусса-Зейделя

3. Метод обращения матрицы

4. Триангуляция матрицы

5. Метод Халецкого

6. Метод квадратного корня

Литература


1. Метод последовательных приближений

Наиболее распространенными методами применительно к большим системам являются итерационные методы, использующие разложение матрицы на сумму матриц, и итерационные методы, использующие факторизацию матрицы, т.е. представление в виде произведения матриц.

Простая итерация : уравнение приводится к виду , например, следующим образом:

,

где и содержат произвольную матрицу коэффициентов, по возможности желательно близкую к .

Если выбрать A=H+Q так, чтобы у положительно определенной H легко находилась , тогда исходная система приводится к следующему удобному для итераций виду:

.

В этом случае, при симметричной матрице A и положительно определенной Q итерационный процесс сходится при любом начальном .

Если взять H в виде диагональной матрицы D= , в которой лишь на главной диагонали расположены ненулевые компоненты, то этот частный случай называется итерационным методом Якоби .

2. Метод Гаусса-Зейделя

Метод Гаусса-Зейделя отличается тем, что исходная матрица представляется суммой трех матриц:


.

Подстановка в и несложные эквивалентные преобразования приводят к следующей итерационной процедуре:

.

Различают две модификации: одновременную подстановку и последовательную. В первой модификации очередная подстановка выполняется тогда, когда будут вычислены все компоненты нового вектора. Во второй модификации очередная подстановка вектора выполняется в тот момент, когда будет вычислена очередная компонента текущего вектора. В векторно-матричной форме записи последовательная подстановка метода Гаусса-Зейделя выглядит так:

.

Вторая форма требует существенно меньшее число итераций.

3. Метод обращения матрицы

Эквивалентные преобразования матрицы в произведение более простых, приводящих к решению или облегчающих его получение, начнем с рассмотрения метода обращения матрицы. Так как в общем виде решение системы представляется через обратную матрицу в виде , то предположим, что

,


тогда, умножив справа равенство на матрицу A , получим

.

Отсюда можно сделать вывод, что матрицы должны последовательно сводить матрицу A к единичной. Если преобразующую матрицу выбрать так, чтобы только один ее столбец отличался от единичных векторов-столбцов, т.е. , то вектор-столбец можно сформировать таким, чтобы при умножении на текущую преобразуемую матрицу в последней i- тый столбец превратился в единичный . Для этого берут

и тогда .

Фактически это матричное произведение преобразует все компоненты промежуточной матрицы по формулам, применяемым в методе исключения Гаусса. Особенность этого процесса заключается в том, что диагональные элементы исходной и всех промежуточных матриц не должны быть нулевыми.

Кроме обратной матрицы, равной произведению всех T -матриц, теперь можно получать и решения уравнений для любого вектора в правой части.


4. Триангуляция матрицы

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 163
Бесплатно скачать Реферат: Прямые методы решения систем линейных алгебраических уравнений