Реферат: Приближенные вычисления в расчетных химических задачах
• никакого предварительного округления всех этих чисел производить нельзя;
• нельзя дописывать десятичные нули.
Правила округления чисел
Данные в условии задачи числа, имеющие разную точность, придётся округлять, приступая к тем или иным математическим действиям. Поэтому следует сформулировать правила, согласно которым округления будут выполнены корректно и с минимальной погрешностью.
Для начала введём определения.
Округлением десятичной дроби называют отбрасывание цифр этой дроби, следующих за некоторым разрядом.
Округлением целого числа называют замену нулями цифр этого числа, следующих за некоторым разрядом.
Правила округления
• Если первая отбрасываемая цифра менше 5, то последняя сохраняемая цифра не изменяется.
Например, чтобы представить числовое значение относительной атомной массы бериллия (Лг (Ве) = 9,01218) с двумя десятичными знаками, необходимо округлить число 9,01218. Первая отбрасываемая цифра 2, она меньше 5, следовательно, число 9,01218, округлённое до 2 десятичных знаков, равно 9,01: Лг (Ве) ~ 9,01.
• Если первая отбрасываемая цифра больше 5, то последняя сохраняемая цифра увеличивается на единицу.
Например, числовое значение относительной атомной массы скандия Hr (Sc) = 44,9559) с тремя десятичными знаками равно 44,956: /\r (Sc) ~ = 44,956.
• Если отбрасывается только цифра 5, то последняя сохраняемая цифра не изменяется, если она чётная, и увеличивается на единицу, если она нечётная.
Например, чтобы представить числовое значение относительной атомной массы золота (Лг (Аи) = = 196,9665) с тремя десятичными знаками, необходимо округлить число 196,9665. Первая и единственная отбрасываемая цифра 5, а первая сохраняемая цифра 6 чётная, следовательно, цифру 6 необходимо оставить без изменения. Таким образом, Аг (Аи) ~ 196,966.
В то же время при округлении числового значения относительной атомной массы углерода ИГ (С) = 12,01115) до четырёх десятичных знаков надо отбросить единственную цифру 5, первая сохраняемая цифра 1 нечётная, следовательно, её необходимо увеличить на единицу: А,(С) ~ ~ 12,0112.
Рассмотрим следующий пример. Необходимо представить числовое значение относительной атомной массы кислорода (4(0) = = 15,9994) с двумя десятичными знаками. Согласно вышеприведённым правилам следует отбросить от числа 15,9994 последние две цифры — 9 и 4, а последнюю сохраняемую 9 — увеличить на единицу. Но цифры большей чем 9.в десятичной системе счисления нет. Не вдаваясь в математические рассуждения и обоснования, приведём правило для такого рода случаев.
• Если отбрасывают цифру больше 5, а последняя сохраняемая цифра 9, то её заменяют нулём, а предпоследнюю цифру увеличивают на единицу. Если же несколько подряд сохраняемых цифр равны 9, то их заменяют нулями, а первая сохраняемая цифра, отличная от9, увеличивается на единиц)'. В итоговой записи сохраняются все десятичные знаки. Нельзя отбрасывать десятичные знаки, равные нулю.
В числе 15,9994 отбрасываем третий десятичный знак (9), второй десятичный знак (9) заменяем нулём, но предпоследняя цифра тоже равна 9, её необходимо заменить на нуль. Первая цифра, отличная от 9, равна 5, её мы увеличиваем на единицу. Таким образом, Ar (0) ~ 16,00. Неправильно записать Аг (0) = 16,0 или Д(О) =16, отбросив значащие нули.
Теперь приступим к математическому решению задачи 1.
Вычислим массу питьевой соды в смеси.
Вычислим молярные массы гидрокарбоната натрия (питьевой соды) и хлороводорода, раствор которого представляет собой соляная кислота, или узнаем их из справочника.
Вычислим по уравнению реакции массу хлороводорода.
Вычислим массу соляной кислоты.
Вычислим объём соляной кислоты.
Приближённые вычисления в расчётных задачах
В расчётных задачах по химии подавляющее большинство вычислений не выходят за рамки четырёх действий: сложения, вычитания, умножения, деления.
При формулировании правил будем считать, что в записи числа с наименьшим числом десятичных знаков все десятичные знаки верные.
Правила сложения
Чтобы сложить приближённые числа с различным числом десятичных знаков, достаточно: