Реферат: Применение информатики, математических моделей и методов в управлении
Часто некоторые или все переменные удовлетворяют условию неотрицательности , что оказывается весьма удобным при численном решении уравнений, описывающих процесс управления. Кроме того, во многих задачах, например, экономических, величины не могут быть отрицательными по своему физическому смыслу (затраты, выпуск продукции, объемы перевозимых товаров, размещенные различным образом суммы денег и т. п.).
Состояние объекта управления может зависеть от множества неконтролируемых или не полностью контролируемых факторов, определяемых совокупностью внешних условий, в которых находится объект управления.
Летчик, например, может регулировать режим самолета путем изменения высоты и скорости полета, которые являются в данном случае контролируемыми параметрами. Однако на расход топлива в значительной степени влияют внешние атмосферные условия, которые летчик может лишь частично принимать во внимание, но на которые он не может активно воздействовать и даже точно их предвидеть.
То есть для того, чтобы создать модель управления процессом, необходимо собрать данные об этом процессе, интересующие нас, привести их к общему виду, и только после этого они будут готовы к созданию модели.
III. Применение информатики в управлении
1. Наука кибернетика
Кибернетика является молодой наукой, которая возникла в первые годы после второй мировой войны и развивалась столь стремительно, что к настоящему времени завоевала прочные позиции во многих областях науки и техники. Своими успехами кибернетика обязана открытию ряда аналогий между функционированием технических устройств, жизнедеятельностью организмов и развитием коллективов живых существ. Эти аналогии, вытекающие из общих рассуждений методологического характера, кибернетика подкрепила созданием математических методов, позволивших с количественной точки зрения описывать процессы в системах самой разнообразной физической природы. Принципы кибернетики находят широкое применение в автоматике и телемеханике, теории связи, в экономике и социологии, в биологии и медицине. Современный смысл термина «кибернетика» связан с именем крупного американского математика Н. Винера, книга которого «Кибернетика или управление и связь в животном и машине», вышедшая в свет в 1948 г., положила начало формированию этой новой научной дисциплины.
Возникновение кибернетики как науки об управлении неразрывно связано с общим техническим прогрессом, характеризующим развитие производительных сил в современную эпоху.
До появления кибернетики основные направления развития техники характеризовались, во-первых, созданием устройств, служащих для получения и преобразования энергии (например, паровые машины, турбины, генераторы электрической энергии, электрические и другие виды двигателей и т. п.), и, во-вторых, созданием устройств, служащих для воздействия на окружающую природу. Основное внимание в таких устройствах обращается на энергетические соотношения, и важнейшим показателем их работы является коэффициент полезного действия. Сравнительная простота технических устройств не ставила проблему управления ими на особое место. Человек одновременно работал и управлял объектом своей работы. Необходимую для управления информацию он получал непосредственно от своих органов чувств, наблюдая за результатами работы.
Однако прогресс техники в середине XX века привел к созданию столь сложных технических систем, задачи управления которыми стали превышать физиологические возможности человека. В конце второй мировой войны такой задачей явилась задача создания автоматической системы управления зенитным огнем, которая при скоростях самолетов, сравнимых со скоростью зенитного снаряда, могла бы без участия человека следить за курсом самолетов, осуществлять расчет их траекторий и наводку орудий. В подобных системах на первое место выдвигаются задачи получения информации об окружающей обстановке, обработки этой информации с целью извлечения из нее пригодных для управления данных и использования этой информации для осуществления целенаправленных действий, т. е. задачи создания устройств, служащих для связи и управления. Необходимость решения этих задач привела к быстрому прогрессу в области теории связи, вычислительной техники и автоматики, что положило начало развитию тех идей, которые позднее явились фундаментом кибернетики.
Устройства связи и управления существенно отличаются от упоминавшихся выше технических устройств в том отношении, что энергетические соотношения в них не играют существенной роли и основное внимание обращается на способность их передавать и перерабатывать без искажения большие количества информации. Так, в линии радиосвязи лишь ничтожная доля энергии, излучаемой антенной радиопередатчика, достигает приемника и к. п. д. получается чрезвычайно низким. Однако линия радиосвязи считается хорошей, если сообщения по ней передаются с малыми искажениями и не подвержены влиянию помех. Таким образом, главные процессы в устройствах связи и управления — это процессы передачи и переработки информации, а не процессы, связанные с преобразованием и использованием энергии.
Понятие системы, наряду с понятием управления, является фундаментальным понятием кибернетики. Любая реально существующая система состоит из конкретных объектов, в качестве которых могут выступать технические устройства, люди, управляющие этими устройствами, материальные ресурсы и т. п. Эти объекты связаны между собой и с окружающим миром определенными связями, представляющими собой силы, потоки энергии, вещества, информации. Однако кибернетика отвлекается от физического содержания свойств объектов и связей и рассматривает реальную систему как абстрактное множество элементов, наделенных общими свойствами и находящихся друг с другом в некоторых отношениях, определяемых характером существующих связей. Такое представление позволяет отказаться от привычного разделения систем на механические, электрические, химические, биологические и т. п. и ввести понятие абстрактной кибернетической системы как совокупности взаимосвязанных и воздействующих друг на друга элементов.
Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.
Встречающиеся на практике системы в зависимости от их структуры и характера связей делятся на детерминированные и вероятностные. Детерминированной называется система, законы движения которой точно известны и будущее поведение которой можно предвидеть. Для вероятностной системы нельзя сделать точного предсказания ее будущего поведения. Примером детерминированной системы может служить часовой механизм. Однако системы статистического контроля продукции, системы прибытия кораблей в морские порты или запас товаров на складе, имеющем большое число поставщиков и потребителей, являются вероятностными системами.
Задачи, которые решает кибернетика, приводят в большинстве случаев к необходимости рассмотрения достаточно сложных вероятностных систем, которые состоят из большого числа элементов и имеют разнообразные и разветвленные внутренние связи. Именно к таким системам относится большинство производственных систем, экономические, социальные и биологические системы. Для математического описания таких систем наряду с теорией множеств и математической логикой широко применяется аппарат теории вероятностей и методы математической статистики.
Пока мы коснулись лишь математических методов, используемых для описания кибернетических систем. Однако целью кибернетики является управление системами. Для суждения о путях решения этой задачи необходимо четко представить себе смысл термина «управление».
В широком смысле слова под управлением понимают организационную деятельность, осуществляющую функции руководства чужой работой, направленной на достижение определенных целей. Процесс управления состоит в принятии решений о наиболее целесообразных действиях в той или иной сложившейся ситуации. Человек, осуществляющий управление, принимает решения, оценивая окружающую обстановку с помощью информации, получаемой от своих органов чувств, измерительных приборов, других лиц. Во многих случаях этой информации оказывается недостаточно для однозначной оценки обстановки. Тогда человек использует свой опыт, свои знания, память, интуицию. Замечательным свойством человека является способность принимать решения в условиях значительной неопределенности в отношении окружающей обстановки.
Однако в условиях современных крупных промышленных предприятий знаний и интуиции даже у опытного руководителя оказывается недостаточно, чтобы осуществлять эффективное управление. В результате возникают такие недостатки в работе крупных предприятий, как трудности с регулярным обеспечением сырьем и материалами без чрезмерного увеличения запасов, серьезные транспортные проблемы и т. п. Кибернетика ставит задачей облегчение человеку процесса принятия ответственных решений, возлагая на автоматические устройства сбор и обработку больших количеств информации относительно состояния производственного процесса, анализ сложившихся ситуаций и выработку рекомендаций относительно целесообразных действий. Автоматические устройства, осуществляющие совокупность таких операций, называются автоматизированными системами управления. В основу работы таких систем положены компьютеры.
Роль компьютерных систем в кибернетике настолько важна, что на этом вопросе следует остановиться подробней.
Первоначально компьютеры использовались для проведения традиционных расчетов, которые раньше занимали много часов, а теперь стали требовать секунд. Но вскоре стало очевидным, что огромное увеличение скорости вычислений содержит в себе качественно новые явления. Если раньше проектировщик или экономист из всего множества возможных вариантов решения какой-либо задачи мог проанализировать лишь некоторые, которые ему по каким-то причинам казались достойными внимания, То теперь открылась возможность сравнивать все возможные варианты и выбирать наилучший из них. Так появились идеи оптимизации, которые в дальнейшем привели к развитию ряда новых разделов математики.
Далее