Реферат: Применение математики в статистике

2) определение функции регрессии;

3) оценка неизвестных значений зависимой переменной.

По аналитическому выражению различают прямолинейную и криволинейную связи.

Прямолинейная связь имеет место, когда с возрастанием (или убыванием) значений Х значения Y увеличиваются (или уменьшаются) более или менее равномерно.

В этом случае уравнение связи записывается так:

`yх = b 0 + b 1 х.

Криволинейная форма связи может выражаться различными кривыми, из которых простейшими являются:

1) парабола второго порядка

`yх = b 0 + b 1 х +b 2 х2 ;

2) гипербола

`yx =b 0 +b 1 /x;

3) показательная

`yx = b 0 b 1 x;

либо в логарифмическом виде

ln`yx = lnb 0 + xlnb 1 .

После определения формы связи, т.е. вида уравнения регрессии, по эмпирическим данным определяют параметры искомого уравнения.

При этом отыскиваемые параметры должны быть такими, чтобы рассчитанные по уравнению теоретические значения результативного признака максимально приближались к эмпирическим данным.

Чаще всего определение параметров уравнения регрессии осуществляется с помощью метода наименьших квадратов, в котором предполагается, что сумма квадратов отклонений теоретических значений от эмпирических должна быть минимальной,

В зависимости от формы связи в каждом конкретном случае определяется своя система уравнений, удовлетворяющая принципу минимизации.

Предположение о парной линейной зависимости между Х и Y можно описать функцией

Y = b0 + b1 Х + и,

где b0 , b1 – истинные значения параметров уравнения регрессии в генеральной совокупности; и – случайная составляющая.

Существует несколько причин возникновения случайной составляющей:

1) невключение объясняющих переменных в уравнение регрессии;

2) агрегирование объясняющих переменных, включенных в уравнение регрессии;

3) неправильное описание структуры модели, т.е. неверный выбор объясняющих переменных;

4) неправильная функциональная спецификация модели. Например, для моделирования использована линейная функция, в то время как зависимость между переменными – нелинейная;

5) ошибки наблюдения (ошибки данных).

По выборочным данным определяются оценки истинных (в случае правильной спецификации модели) параметров уравнения регрессии и случайной составляющей

К-во Просмотров: 287
Бесплатно скачать Реферат: Применение математики в статистике