Реферат: Применение производной в науке и техникe
Содержание
Введение
1. Теоретическая часть
1.1 Задачи, приводящие к понятию производной
1.2 Определение производной
1.3 Общее правило нахождения производной
1.4 Геометрический смысл производной
1.5 Механический смысл производной
1.6 Производная второго порядка и её механический смысл
1.7 Определение и геометрический смысл дифференциала
2. Исследование функций с помощью производной
Заключение
Литература
Введение
В первой главе моего реферата речь пойдёт о понятии производной, правилах её применения, о геометрическом и физическом смысле производной. Во второй главе моего реферата речь пойдёт о применении производной в науке и технике и о решении задач в этой области.
1. Теоретическая часть
1.1 Задачи, приводящие к понятию производной
При изучении тех или иных процессов и явлений часто возникает задача определения скорости этих процессов. Её решение приводит к понятию производной, являющемуся основным понятием дифференциального исчисления.
Метод дифференциального исчисления был создан в XVII и XVIII вв. С возникновением этого метода связаны имена двух великих математиков – И. Ньютона и Г.В. Лейбница.
Ньютон пришёл к открытию дифференциального исчисления при решении задач о скорости движения материальной точки в данный момент времени (мгновенной скорости).
Как известно, равномерным движением называют такое движение, при котором тело в равные промежутки времени проходит равные по длине отрезки пути. Путь, пройденный телом в единицу времени, называют скоростью равномерного движения.
Однако чаще всего на практике мы имеем дело с неравномерным движением. Автомобиль, едущий по дороге, замедляет движение у переходов и ускоряет его на тех участках, где путь свободен; самолёт снижает скорость при приземлении и т.д. Поэтому чаще всего нам приходится иметь дело с тем, что за равные отрезки времени тело проходит различные по длине отрезки пути. Такое движение называют неравномерным. Его скорость нельзя охарактеризовать одним числом.
Часто для характеристики неравномерного движения пользуются понятием средней скорости движения за время ∆t٫ которое определяется соотношением где ∆s – путь, пройденный телом за время ∆t.
Так, при свободном падении тела средняя скорость его движения за первые две секунды есть
Практически такая характеристика движения, как средняя скорость, говорит о движении очень мало. Действительно, при 4,9 м/с, а за 2-ю – 14,7 м/с, в то время как средняя скорость за первые две секунды составляет 9,8 м/с. Средняя скорость в течение первых двух секунд не даёт никакого представления о том, как происходило движение: когда тело двигалось быстрее, а когда медленнее. Если же задать средние скорости движения для каждой секунды в отдельности, то мы будем знать, например, что во 2-ю секунду тело двигалось значительно быстрее, чем в 1-ю. Однако в большинстве случаев значительно быстрее, чем нас мало устраивает. Ведь нетрудно понять, что в течение этой 2-й секунды тело также движется по-разному: в начале медленнее, в конце быстрее. А как оно движется где-то в середине этой 2-й секунды? Иными словами, как определить мгновенную скорость?
Пусть движение тела описывается законом Рассмотрим путь, пройденный телом за время от t0 до t0 + ∆t, т.е. за время, равное ∆t. В момент t0 телом пройден путь , в момент – путь . Поэтому за время ∆t тело прошло путь и средняя скорость движения тела за этот промежуток времени составит.
Чем меньше промежуток времени ∆t, тем точнее можно установить, с какой скоростью движется тело в момент t0 , так как движущееся тело не может значительно изменить скорость за малый промежуток времени. Поэтому средняя скорость при стремлении ∆t к нулю приближается к действительной скорости движения и в пределе даёт скорость движения в данный момент времени t0 (мгновенную скорость).
Таким образом,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--