Реферат: Применение производной в науке и техникe
Задача №3 . В специальной литературе для определения угла β поворота шпинделя фрезерного станка при фрезеровании муфт с зубьями выводится формула , где . Так как эта формула сложна, то рекомендуется отбросить её знаменатель и пользоваться упрощённой формулой . При каких ( – целое число, ) можно пользоваться этой формулой, если при определении угла допускается погрешность в ?
Решение. Точную формулу после несложных тождественных преобразований можно привести к виду . Поэтому при использовании приближённой формулы допускается абсолютная погрешность , где . Исследуем функцию на отрезке [8; 50]. При этом 0,06, т.е. угол принадлежит первой четверти. Имеем: . Заметим, что на рассматриваемом промежутке, а значит, функция на этом промежутке убывает. Поскольку далее , то при всех рассматриваемых . Значит, . Так как радиан, то достаточно решить неравенство . Решая это неравенство подбором, находим, что , . В силу того, что функция убывает, следует, что .
Заключение
Применение производной довольно широко, и его можно полностью охватить в работе такого типа, однако я попытался раскрыть основные базовые моменты. В наше время, в связь с научно-техническим прогрессом, в частности с быстрой эволюцией вычислительных систем, дифференциальное исчисление становиться всё более актуальными в решении как простых, так и сверхсложных задач.
Литература
1. В.А. Петров «Математический анализ в производственных задачках»
2. Соловейчик И.Л., Лисичкин В.Т. «Математика»