Реферат: Применение Законов Электродинамики

Но открытие контактной разности потенциалов между различными металлами еще не могло объяснить опытов Гальвани с лягушками. Нужны были дополнительные предположения.

Но на опыте Гальвани соединялись не только металлы. В цепь включались и мышцы лягушки, содержащие и себе жидкость.

Он предположил, что все проводники следует разбить на два класса: проводники первого рода – металлы и некоторые другие твердые тела, и проводники второго рода – жидкости. При этом Вольта решил, что разность потенциалов возникает только при соприкосновении проводников первого рода.

Такое предположение объясняло опыт Гальвани. В результате соприкосновения двух различных металлов нарушается равновесие в них электричества. Это равновесие восстанавливается в результате того, что металлы соединяются через тело лягушки. Таким образом электрическое равновесие все время нарушается, и все время восстанавливается, значит, электричество все время движется.

Такое объяснение опыта Гальвани неверно, но оно натолкнуло Вольта на мысль о создании источника постоянного тока – гальванической батареи. И вот в 1800 г. Вольта построил первую гальваническую батарею – Вольтов столб.

Вольтов столб состоял из нескольких десятков круглых серебряных и цинковых пластин, положенных друг на друга. Между парами пластин были проложены картонные кружки, пропитанные соленой водой. Такой прибор служил источником непрерывного электрического тока.

Интересно, что в качестве довода о существовании непрерывного электрического тока Вольта привлекал непосредственные ощущения человека. Он писал, что если крайние пластины замкнуты через тело человека, то сначала, как и в случае с лейденской банкой, человек испытывает удар и покалывание. 3атем возникает ощущение непрерывного жжения, «которое не только не утихает, но делается все сильнее и сильнее, становясь скоро невыносимым, до тех пор, пока цепь не разомкнется».

Изобретение Вольтова столба, первого источника постоянного тока, имело огромное значение для развития учения об электричестве и магнетизме. Что же касается объяснения действия этого прибора Вольта, то оно, было ошибочным. Это вскоре заметили некоторые ученые.

Действительно, по теории Вольта получалось, что с гальваническим элементом во время его действия не происходит никаких изменений. Электрический ток течет по проволоке, нагревает ее, может зарядить лейденскую банку и т. д., но сам гальванический элемент при этом остается неизменным. Такой прибор является не чем иным, как вечным двигателем, который, не изменяясь, производит изменение в окружающих телах, в том числе и механическую работу.

К концу XVIII в. среди ученых уже широко распространилось мнение о невозможности существования вечного двигателя. Поэтому многие из них отвергли теорию действия гальванического элемента, придуманного Вольтой.

В противовес теории Вольта была предложена химическая теория гальванического элемента. Вскоре после его изобретения было замечено, что в гальваническом элементе происходят химические реакции, в которые вступают металлы и жидкости. Правильная химическая теория действия гальванического элемента вытеснила теорию Вольта.

После открытия Вольтова столба ученые разных стран начали исследовать действия электрического тока. При этом совершенствовался и сам гальванический элемент. Уже Вольта наряду со «столбом» стал употреблять более удобную чашечную батарею гальванических элементов. Для исследования действий электрического тока стали строить батареи со все большим и большим числом элементов.

Наиболее крупную батарею в самом начале XIX в. построил русский физик Василий Владимирович Петров в Петербурге. Его батарея состояла из 4200 цинковых и медных кружков. Кружки укладывались в ящик горизонтально и разделялись бумажными прокладками, пропитанными нашатырем.

Первые шаги в изучении электрического тока относились к его химическим действиям. Уже в том же году, в котором Вольта изобрел гальваническую батарею, было открыто свойство электрического тока разлагать воду. Вслед за этим было произведено разложение электрическим током растворов некоторых солей. В 1807 г. английский химик Дэви путем электролиза расплавов едких щелочей открыл новые элементы: калий и натрий.

Исследование химического действия тока и выяснение химических процессов, происходящих в гальванических элементах, привело ученых к разработке теории прохождения электрического тока через электролиты.

Вслед за изучением химического действия тока ученые обратились к его тепловым и оптическим действиям. Наиболее интересным результатом этих исследований в самом начале XIX в. было открытие электрической дуги Петровым.

Открытие, сделанное Петровым, было забыто. Многие, особенно иностранные, ученые о нем не знали, так как книга Петрова была написана на русском языке. Поэтому, когда Дэви в 1812 г. снова открыл электрическую дугу, его стали считать автором этого открытия.

Наиболее важным событием, приведшим вскоре к новым представлениям об электрических и магнитными явлениях, было открытие магнитного действия электрического тока.

Электростатика

Электростатика – часть электродинамики, которая изучает неподвижные электрические заряды.

Электрический заряд

Частицы взаимодействующие друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышающие силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Бывают частицы без электрического заряда, но электрический заряд без частицы не существует. Взаимодействие между заряженными частицами называется электромагнитным.

Наличие электрического заряда у частиц означает существование определённых силовых взаимодействий между ними. В свободном состоянии, могут, не ограничено долго существовать, только электроны и протоны. Если элементарная частица имеет заряд, то его значение строго определено.


Заряженные тела

Электромагнитные силы играют огромную роль в природе благодаря тому, что в состав всех тел входят электрически заряженные частицы. Действие электромагнитных сил между телами не обнаруживается, т.к. тела в обычном состоянии электрически нейтральны. Положительно и отрицательно заряженные частицы связанны друг с другом электрическими силами и образуют нейтральные системы.

Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком заряда.

Для того чтобы наэлектризовать тело, нужно отделить часть отрицательного заряда от связанного с ним положительного. Это можно сделать с помощью трения.

Закон сохранения электрического заряда

При электризации тел выполняется закон сохранения электрического заряда. Этот закон справедлив для замкнутой системы. Справедливость закона сохранения электрического заряда подтверждает наблюдение над огромным числом превращений элементарных частиц.

К-во Просмотров: 967
Бесплатно скачать Реферат: Применение Законов Электродинамики