Реферат: Применение Законов Электродинамики

Основным законом электростатики является экспериментально установленный закон французского физика Шарля Кулона в 1785 г. XVIII

Однако история его открытия начинается раньше. Эта история показывает один из путей, по которому развивается физика, - путь применения аналогии. Эпинус уже догадывался о том, что сила взаимодействия между электрическими зарядами обратно пропорциональна квадрату расстояния между ними. И эта догадка возникла на основе некоторой аналогии между силами тяготения и электрическими силами. Но аналогия не является доказательством. Вывод из аналогии всегда требует проверки. Опираясь только на аналогию, можно прийти и к неверным результатам. Эпинус не проверил справедливость данной аналогии, и поэтому его высказывание имело только предположительный характер.

Закон Кулона применим для точечных зарядов. Точечные заряды – размеры тел, которых во много раз меньше чем расстояние между ними. Силы взаимодействия двух неподвижных точечных заряженных тел в вакууме прямо пропорционально произведению модулей зарядов и обратно пропорционально квадрату расстояния между ними.

С помощью крутильных весовІ удалось установить друг с другом неподвижные заряженные тела.

Кулон нашёл простой способ изменения заряда одного из шариков в 2, 4 и более раз, соединяя его с таким же не заряженным шариком. Заряд при этом распределяется поровну между шариками, что и уменьшало исследуемый заряд в известном отношении.

Один Кулон – это заряд проходящий через поперечное сечение проводника при силе тока один Ампер за одну секунду.

Электрическое поле

После открытия закона Кулона теория дальнодействия совсем вытесняет теорию близкодействия. И только в XIX в. Фарадей возрождает теорию близкодействия. Однако ее всеобщее признание начинается со второй половины XIX в., после экспериментального доказательства теории Максвелла.

Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создаёт в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.

Успех к теории близкодействия пришёл после изучения электронных взаимодействий движущихся заряженных частиц. Сначала было доказано существование переменных во времени полей и только после этого был сделан вывод о реальности электрического поля неподвижных зарядов.

Основываясь на идеях Фарадея, Максвелл сумел теоретически доказать, что электромагнитные взаимодействия должны распространяться в пространстве с конечной скоростью. Это означает, что если слегка передвинуть один заряд, то сила, действующая на другой заряд, изменится, но не в то же мгновение, а лишь спустя некоторое время.

Существование определённого процесса, в пространстве между взаимодействующие телами, которым делится конечное время, - вот главное, что отличает теорию близкодействия от теории действия на расстоянии. Главное свойство электрического поля – действия его на электрические заряды с некоторой силой. Электрическое поле неподвижных зарядов называют электростатическим. Оно не меняется со временем. Электростатическое поле создаётся только электрическим зарядом. Оно существует в пространстве, окружающем эти заряды, и неразрывно с ними связано.

Согласно теории близкодействия взаимодействие между заряженными частицами осуществляется посредством электрического поля.

Электрическое поле – это особая форма материи, существующая независимо от наших представлениях о нём. Доказательством реальности электрического поля – конечная скорость распространения электромагнитных взаимодействий.

Напряжённость электрического поля

Электрическое поле обнаруживается по силам, действующим на заряд. Если поочерёдно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля. Эту характеристику называют напряжённостью электрического поля. Подобно силе, напряжённость поля – векторная величина. Напряжённость поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.


Силовые линии электрического поля

Электрическое поле не видимо для человеческого глаза. Тем не менее распределение поля в пространстве можно сделать видимым. Непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с векторами напряжённости. Эти линии называются силовыми линиями электрического поля или линиями напряжённости. Электрическое поле, напряжённость которого одинакова во всех точках пространства, называется однородным.

Законы постоянного тока

Электрический ток

При движении заряженных частиц в проводнике происходит перенос с одного места в другое. Если заряженные частицы совершают беспорядочное тепловое движение, как, свободные электроны в металле, то перенос заряда не происходит. Электрический заряд перемещается через поперечное сечение проводника только в том случае, если наряду с беспорядочным движением электроны участвуют в упорядоченном движении. В этом случае говорят, что в проводнике устанавливается электрический ток.

Электрический ток – упорядоченное движение заряженных частиц. Электрический ток возникает при упорядоченном перемещении свободных электронов или ионов. Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.

Электрический ток существует по тем действиям или явлениям, которые его сопровождают:

а) проводник, по которому течет ток, нагревается

б) электрический ток может изменять химический состав проводника

в) ток показывает силовое воздействие на соседние токи и намагниченные тела

Магнитное действие тока в отличие от химического и теплового является основным.

Если в цепи устанавливается электрический ток, то это означает, что через поперечное сечение проводника все время переносится электрический заряд. Заряд, перенесенный в единицу времени, служит основной количественной характеристикой тока, называемой силой тока.

Сила тока равна отношению заряда, переносимого через поперечное сечение проводника за интервал времени, к этому интервалу времени. Если сила тока со временем не меняется, то ток называют постоянным. Сила тока - скалярная величина. Она может быть как отрицательной и положительной. Сила тока зависит от заряда, переносимого каждой частицей, концентрации частиц, скорости их направленного движения и площади поперечного сечения проводника. Сила тока выражают в амперах. Это единицу устанавливают на основе магнитного взаимодействия токов. Силу тока измеряют амперметрами. Скорость упорядоченного перемещения электронов очень мала (около 0,1 мм/с). Сила тока – основная количественная характеристика электрического тока.

К-во Просмотров: 970
Бесплатно скачать Реферат: Применение Законов Электродинамики