Реферат: Принцип соответственных состояний. Прогнозирование коэффициентов сжимаемости и фугитивности
.
Когда Ван-дер-Ваальс записал свое уравнение при помощи приведенных свойств (4.9), он впервые сформулировал принцип соответственных состояний.
Согласно этому принципу предполагается, что приведенные конфигурационные свойства всех газов и жидкостей, по существу, одинаковы, если их сравнивать при одинаковых приведенных температурах и давлениях. Для P-V-T свойств этот принцип дает
(4.30)
или
. (4.31)
Значение критического коэффициента сжимаемости для большинства органических веществ, за исключением очень полярных или состоящих из больших молекул газов и жидкостей, находится в диапазоне 0,27–0,29. Если принять постоянным, то уравнение (4.31) переходит в уравнение
, (4.32)
в котором коэффициент сжимаемости коррелирован с приведенной температурой () и приведенным давлением ().
Зависимость (4.32) является параметрическим уравнением состояния. Параметрами служат и . Это значит, что зная и для данного вещества, можно определить волюметрические свойства при различных температурах и давлениях. Расчет может быть выполнен по диаграммам, широко приводимым в литературе, с использованием таблиц или аналитических зависимостей.
Уравнения состояния в приведенном виде применяются в настоящее время достаточно широко, однако следует иметь в виду, что их точность в целом не выше, чем точность исходных уравнений. В то же время можно привести множество примеров, когда экспериментальные данные лучше согласуются с прогнозом на основе принципа соответственных состояний, чем с привлечением специальных уравнений состояния. Согласованность с принципом соответственных состояний часто нарушается при высоких значениях и .
Было сделано много попыток увеличить точность расчетного метода. Наиболее успешные модификации чаще всего включают дополнительный, третий параметр в функции, выраженной уравнением (4.32). Третий коррелирующий параметр обычно связывают либо с приведенным давлением паров при избранной температуре, либо с каким-нибудь волюметрическим свойством в критической точке или около нее.
Этот третий коррелирующий параметр является, фактически, критерием подобия, а принцип соответственных состояний - частным случаем общей теории подобия.
В настоящее время предложено значительное количество различных критериев подобия в приложении к принципу соответственных состояний. Между большинством из них относительно несложно установить количественные соотношения. Как правило, в литературе такие соотношения приводятся.
Одним из наиболее широко применяемых критериев подобия для P-V-T зависимостей является ацентрический фактор. С его использованием Питцер и др. [6] представили коэффициент сжимаемости
(4.33)
В большинстве случаев оказывается достаточной линейная форма уравнения
, (4.34)
в котором - функция, характеризующая поведение молекул простого вещества, - функция, характеризующая отклонение в поведении молекул рассматриваемого вещества от поведения молекул простого вещества.
Уравнения (4.33) и (4.34) принято называть разложением Питцера. В литературе имеются таблицы значений и в виде функций и . По ним можно определять коэффициенты сжимаемости и для газов, и для жидкостей. Таблицы, как правило, рекомендованы для неполярных веществ. Имеются специальные диаграммы для полярных веществ. Выделены в особую группу также легкие газы - водород, гелий и неон. Кроме того, для очень высоких температур и давлений рекомендованы диаграммы “приведенное давление - приведенная температура - приведенная плотность”. Многообразие диаграмм имеет некоторые непринципиальные различия, которые обусловлены различиями массивов отобранных для их составления экспериментальных данных и тем, как эти данные сглаживались.
Широко апробированы и рекомендуются для прогнозирования Z таблицы Ли-Кеслера (табл. 4.6, 4.7). Некоторые примеры применения этих таблиц приведены в разд. 6. В основе таблиц Ли-Кеслера лежит модифицированное ими уравнение состояния Бенедикта-Уэбба-Рубина, которое признано одним из наиболее эффективных уравнений и превосходит по возможностям даже кубические уравнения состояния.
Критический коэффициент сжимаемости можно вычислять по уравнению Эдмистера, зная ацентрический фактор :
(4.35)
Многие методы прогнозирования свойств реальных газов и жидкостей основаны на фугитивности (летучести). Фугитивность () - это такая функция, использование которой вместо давления в термодинамических соотношениях для идеальных газов и жидкостей делает их применимыми для описания свойств реальных газов и жидкостей. Для прогнозирования фугитивности широко используются методы, основанные на принципе соответственных состояний, в частности таблицы Ли-Кеслера (табл. 4.8, 4.9) и разложение Питцера для коэффициента фугитивности ():
; (4.36)
- функция, характеризующая поведение молекул простого вещества,
- функция, характеризующая отклонение в поведении молекул
рассматриваемого вещества от поведения молекул простого вещества,
- ацентрический фактор.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--