Реферат: Проблемы квазистатической электродинамики
Правильная идея решения не нашла корректного решения. Фактически мы сталкиваемся с несколькими «массами», имеющими различные свойства: стандартная «механическая» масса, «электромагнитная» масса, масса «неэлектромагнитного» происхождения, к которым необходимо добавить, «продольную» и «поперечную» массы, введенные Эйнштейном («Массовый Ералаш»).
Итак, в основе проблемы электромагнитной массы лежит гносеологическая ошибка, т.е. ошибочное мнение, что поля электромагнитной волны и поля заряда суть одно и то же. Отсюда неправомерное использование вектора Пойнтинга за пределами его применимости, т.е. применение этого вектора к полям заряда.
2. Решение проблемы электромагнитной массы
Теорема Умова произвела большое впечатление на современников. Однако после опубликования Пойнтингом своего закона сохранения о теореме Умова «благополучно» забыли. В западных учебниках вы не встретите имен Н.А. Умова, П.Н. Лебедева (экспериментально обнаружившего давление света, 1899 г.), Ф.Г. Столетова (открывшего фотоэффект, 1889 г.) и многих других русских ученых. В СССР с целью сохранения приоритета Умова закон, сформулированный Пойнтингом, стал именоваться законом сохранения Умова – Пойнтинга.
Справедливости ради следует заметить, что законы Умова и Пойнтинга, сходные по форме, отражают различные явления в физике. Каждый из них имеет свою ценность.
Закон Умова описывает конвективный перенос энергии. Как любому движущемуся телу соответствует импульс, так и движущейся среде соответствует плотность потока энергии, связанная с импульсом. Закон Пойнтинга не связан с движением среды. Вектор Пойнтинга описывает плотность потока электромагнитной волны, которая после излучения распространяется в пространстве со скоростью света. Каждый закон имеет свои границы применимости, и использование закона за пределами границ применимости ведет к ошибкам.
Решение проблемы электромагнитной массы было получено в 1974 г. [4], но тогда это решение было отклонено из-за того, что авторы не представили «релятивистский» вариант доказательства.
Суть решения проблемы электромагнитной массы в следующем. Было доказано, что закон сохранения Умова справедлив для поля заряда, описываемого уравнениям Пуассона. «Релятивистский» результат был найден позже [5].
Итак, плотность потока Умова для поля заряда равна [5], [6]:
(2.1)
Эта плотность потока соответствует представлениям классической механики Ньютона. Более того, был установлен закон баланса кинетической энергии поля заряда. В этом законе установлено, что кинетическая энергия поля заряда равна.
Ek = me v2 /2
Сущность этого закона можно проиллюстрировать примером. Вокруг проводника с током возникает магнитное поле. Если ток увеличивается, во всем пространстве, окружающем проводник, возникает поток энергии, направленный от проводника. Этот поток увеличивает магнитное поле и энергию этого поля. Если же ток уменьшается, то возникает поток, направленный к проводнику с током. Поток стремится поддержать ток в проводнике за счет уменьшения магнитного поля, окружающего проводник.
Все классические соотношения, справедливые для механики Ньютона, имеют место для электромагнитной массы.
Pe = me v; E = Ep + Ek = me (c2 + v2 / 2) (2.2)
где: Ep и Ek потенциальная и кинетическая энергии, соответственно.
Соотношения (2.2) не зависят от структуры заряда.
Отсюда следует важный вывод: какую бы природу не имела инерциальная масса, она будет всегда иметь стандартные свойства обычной инерциальной массы.
3. Классификация физических законов
Прежде, чем перейти к описанию взаимодействия зарядов, токов и т.д., мы должны разобраться с понятием «взаимодействие» и познакомиться с классификацией физических законов. Понятие «взаимодействие» играет в физике фундаментальную роль. Мы не сможем обнаружить объект до тех пор, пока он не взаимодействует с каким-либо другим объектом. В Большой советской энциклопедии можно прочесть:
«Было доказано, что взаимодействие электрически заряженных частиц осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент времени, а лишь спустя конечное время. В пространстве между частицами происходит некоторый процесс, который распространяется с конечной скоростью. Соответственно существует «посредник», осуществляющий взаимодействие между заряженными частицами. Этот посредник был назван электромагнитной волной»
Этот предрассудок, «соединяющий» поля зарядов и поля электромагнитных волн в единое целое без учета различия их свойств, широко распространен в современной физике. Причина, как об этом писалось в [3], в том, что ученые «не заметили» возможность нарушения единственности решения волнового уравнения. Более того, физики пользуются мгновенно действующими потенциалами, не подозревая этого [3].
Чтобы объяснить принципы, положенные в основу классификации, напомним некоторые положения физики, касающиеся принципа относительности.
Принцип относительности Галилея: «Прямолинейное и равномерное движение системы отсчета не влияет на ход механических процессов в системе».
Принцип относительности Пуанкаре – Эйнштейна: «Все физические процессы при одинаковых условиях протекают одинаково во всех инерциальных системах отсчета».
Вторую формулировку можно рассматривать как оправданное обобщение принципа относительности Галилея на любые процессы в природе. Мы говорим «можно» по той причине, что правильность обобщения зависит не только от правильности формулировки, но и от правильности реализации этого обобщения. Примером может служить правильное утверждение о наличии у заряда электромагнитной массы и реализация, опиравшаяся на использование вектора Пойнтинга за границами его применимости.
Эйнштейн реализовал этот принцип следующим способом. Он взял за основу уравнения Максвелла (в калибровке Лоренца), а в качестве преобразования использовал преобразование Лоренца, относительно которого уравнения Максвелла были инвариантны. Классическая механика была «подправлена» так, чтобы при малых скоростях математический формализм релятивистской механики переходил в математический формализм механики Ньютона. Преобразование Лоренца было распространено на все без исключения процессы в природе. Однако это обобщение привело к трудностям:
Из теории познания известно, что любое конкретное физическое положение (теория, уравнение, закон и т.д.) всегда имеет границы применимости, за которыми оно теряет свою силу. Это положение касается как преобразования Лоренца, так и преобразования Галилея. Каждое преобразование отвечает за свою область.
Математический формализм релятивистской механики оказался некорректным. Релятивистский вариационный принцип не позволял однозначно найти уравнение движения частиц и поля в электродинамике [7], [8].
Релятивистская механика сразу же столкнулась с трудностями в объяснении физических явлений (например, «парадокс рычага»). Она внесла массу гносеологических ошибок в ньютоновскую механику. Понятие «взаимодействие» подверглось существенной ревизии.
Содержание этого понятия мы сейчас и обсудим. Рассмотрим два объекта, которые взаимодействуют между собой. Это взаимодействие могут наблюдать несколько наблюдателей, находящихся в различных инерциальных системах отсчета. Зависит ли взаимодействие от того, какую систему отсчета выбрал себе наблюдатель?