Реферат: Проектирование сети офиса банка

Ethernet

Ethernet — это самый распространенный на сегодняшний день стандарт локальных сетей. Эта технология была разработана в 1970 году Исследовательским центром в Пало-Альто, принадлежащем корпорации Xerox. В 1980 г. на его основе появилась спецификация IEEE 802.3. Различные реализации - Ethernet, Fast Ethernet, Gigabit Ethernet – обеспечивают пропускную способность соответственно 10, 100 и 1000 Мбит/с.

Главным достоинством сетей Ethernet, благодаря которому они стали такими популярными, является их экономичность. Кроме того, в сетях Ethernet реализованы достаточно простые алгоритмы доступа к среде, адресации и передачи данных. Простота логики работы сети ведет к упрощению и, соответственно, удешевлению сетевых адаптеров и их драйверов. По той же причине адаптеры сети Ethernet обладают высокой надежностью. Еще одной сильной стороной сетей Ethernet является легкость расширения, то есть легкость подключения новых узлов.

Именно эта технология используется в качестве основной, в данном проекте. Ethernet 100 Mbit сейчас является ведущей технологией построения локальных сетей: высокая скорость и надежность сочетается с низкой стоимостью оборудования и легкостью монтажа. Скорость 100 Mbit является избыточной для рассматриваемой сети, но все равно эта технология остается наиболее оптимальной.

Token Ring

В 1970 году эта технология была разработана компанией IBM, а после стала основой стандарта IEEE 802.5. Token Ring является сетью с передачей маркера. Кабельная топология – звезда или кольцо, но логически данные всегда передаются последовательно от станции к станции по кольцу. При этом способе организации передачи информации по сети циркулирует небольшой блок данных – маркер. Каждая станция принимает маркер и может удерживать его в течении определенного времени. Если станции нет необходимости передавать информацию, она просто передает маркер следующей станции. Если станция начинает передачу, она модифицирует маркер, который преобразовывается в последовательность "начало блока данных", после которого следует собственно передаваемая информация. На время прохождения данных маркер в сети отсутствует, таким образом остальные станции не имеют возможности передачи и коллизии невозможны в принципе. При прохождении станции назначения информация принимается, но продолжает передаваться, пока не достигнет станции-отправителя, где удаляется окончательно. Для обработки возможных ошибок, в результате которых маркер может быть утерян, в сети присутствует станция с особыми полномочиями, которая может удалять информацию, отправитель которой не может удалить ее самостоятельно, а также восстанавливать маркер. Поскольку для Token Ring всегда можно заранее рассчитать максимальную задержку доступа к среде для передачи информации, она может применяться в различных автоматизированных системах управления, производящих обработку информации и управление процессами в реальном времени. Для сохранения работоспособности сети при возникновении неисправностей предусмотрены специальные алгоритмы, позволяющие в ряде случаев изолировать неисправные участки путем автоматической реконфигурации. Скорость передачи, описанная в IEEE 802.5, составляет 4 Мбит/с. Существует также реализация 16 Мбит/с, разработанная в результате развития технологии Token Ring.

ARCnet

Attached Resourse Computing Network (ARCnet) – сетевая архитектура, разработанная компанией Datapoint в середине 1970-х годов.

В качестве стандарта IEEE ARCnet принят не был, но частично соответствует IEEE 802.4. Сеть с передачей маркера. Топология - звезда или шина. В качестве среды передачи ARCnet может использовать коаксиальный кабель, витую пару и оптоволоконный кабель. На местной почве, естественно, были популярны варианты на коаксиале и витой паре. Закрепить свои позиции этому недорогому стандарту помешало малое быстродействие - 2,5 Мбит/с. В начале 90-х Datapoint разработала ARCNETPLUS, со скоростью передачи до 20 Мбит/с, обратно совместимый с ARCnet.

FDDI

Технология Fiber Distributed Data Interface (FDDI) была разработана в 1980 году комитетом ANSI. Была первой технологией локальных сетей, использовавшей в качестве среды передачи оптоволоконный кабель. Причинами, вызвавшими его разработку, были возрастающие требования к пропускной способности и надежности сетей. Этот стандарт оговаривает передачу данных по двойному кольцу оптоволоконного кабеля со скоростью 100 Мбит/с. При этом сеть может охватывать очень большие расстояния – до 100 км по периметру кольца. FDDI, также как и Token Ring, является сетью с передачей маркера. В FDDI разделяются 2 вида трафика – синхронный и асинхронный. Полоса пропускания, выделяемая для синхронного трафика, может выделяться станциям, которым необходима постоянная возможность передачи. Это очень ценное свойство при передаче чувствительной к задержкам информации - как правило, это передача голоса и видео. Полоса пропускания, выделяемая под асинхронный трафик, может распределяться между станциями с помощью восьмиуровневой системы приоритетов. Применение двух оптоволоконных колец позволяет существенно повысить надежность сети. В обычном режиме передача данных происходит по основному кольцу, вторичное кольцо не задействуется. При возникновении неисправности в основном кольце вторичное кольцо объединяется с основным, вновь образуя замкнутое кольцо. При множественных неисправностях сеть распадается на отдельные кольца.

Высокая надежность, пропускная способность и допустимые расстояния, с одной стороны, и высокая стоимость оборудования, с другой, ограничивают область применения FDDI соединением фрагментов локальных сетей, построенных по более дешевым технологиям.

Технология, основанная на принципах FDDI, но с применением в качестве среды передачи медной витой пары, называется CDDI. Хотя стоимость построения сети CDDI ниже, чем FDDI, теряется очень существенное преимущество – большие допустимые расстояния.

ATM

Американский национальный институт стандартов (ANSI) и Международный консультативный комитет по телефонии и телеграфии (CCITT, МККТТ) начинали разработку стандартов ATM (Asynchronous Transfer Mode – Асинхронный Режим Передачи) как набора рекомендаций для сети B-ISDN (Broadband Integrated Services Digital Network). При этом изначально преследовалась цель повышения эффективности использования телекоммуникационных соединений, возможность применения в локальных сетях не рассматривалась.

В технологии ATM используются небольшие, фиксированной длины пакеты, называемые ячейками (cells). Размер ячейки - 53 байта (5 байт заголовок + 48 байт данные).

В отличии от традиционных технологий, применяемых в локальных сетях, АТМ – технология с установлением соединения. Т.е. перед сеансом передачи устанавливается виртуальный канал отправитель-получатель, который не может использоваться другими станциями. (В традиционных технологиях соединение не устанавливается, а в среду передачи помещаются пакеты с указанным адресом.) Несколько виртуальных каналов АТМ могут одновременно сосуществовать в одном физическом канале.

Для обеспечения взаимодействия устройств в ATM используются коммутаторы. При установлении соединения в таблицу коммутации заносятся номер порта и идентификатор соединения, который присутствует в заголовке каждой ячейки. В последствии коммутатор обрабатывает поступающие ячейки, основываясь на идентификаторах соединения в их заголовках.

Технология ATM предоставляет возможность регламентировать для каждого соединения минимально достаточную пропускную способность, максимальную задержку и максимальную потерю данных, а также содержит методы для обеспечения управления трафиком и механизмы обеспечения определенного качества обслуживания. Это позволяет совмещать в одной сети несколько типов трафика в одной сети. Обычно выделяют 3 разновидности трафика – видео, голос, данные.

Технология АТМ отличается широкими возможностями масштабирования. В рамках применения АТМ в локальных сетях интерес представляют варианты со скоростью передачи 25 (витая пара класса 3 и выше) и 155 Мбит/с (витая пара класса 5, оптоволокно), 622 Мбит/с (оптоволокно). Существующие стандарты АТМ предусматривают скорости передачи вплоть до 2,4 Гбит/с.

Использование АТМ на практике, прежде всего, привлекательно возможностью использовать одну сеть для всех необходимых видов трафика, причем технология АТМ не ограничивается уровнем локальных сетей – те же самые принципы функционирования и у WAN сегментов сетей ATM. В качестве недостатка можно указать стоимость оборудования, существенно большую, чем у Fast Ethernet, например. Кроме того, сама организация сетей АТМ несколько сложнее и в ряде случаев требует существенной реорганизации существующей сети.

100VG-AnyLAN

Технология разрабатывалась в начале 90-х совместно компаниями AT&T и HP, как альтернатива технологии Fast Ethernet, для передачи данных в локальной сети со скоростью 100 Мбит/с. Летом 1995 года получила статус стандарта IEEE 802.12. "Any" в названии должно означать сети Ethernet и Token Ring, в которых может работать 100VG-AnyLAN. Каждый концентратор 100VG-AnyLAN может быть настроен на поддержку кадров 802.3 (Ethernet), либо кадров 802.5 (Token Ring). Специфические нововведения 100VG-AnyLAN – это метод доступа Demand Priority и схема квартетного кодирования Quartet Coding, использующая избыточный код 5В/6В. Demand Priority определяет простую систему приоритетов – высокий, применяемый для мультимедийных приложений, и низкий – применяемый для всех остальных. В результате коэффициент использования пропускной способности сети должен повышаться. При этом роль арбитра при передаче трафика исполняют концентраторы 100VG-AnyLAN. За счет применения специального кодирования и 4-х пар кабеля, сети 100VG-AnyLAN могут использовать витую пару категории 3. Естественно, могут использоваться кабели более высоких категорий, также поддерживается оптоволоконный кабель.

Кроме основной технологии требуется еще какая-либо технология доступа к глобальной сети. Среди всех имеющихся, для данного проекта наиболее оптимальна тезнология ADSL.

Технолоия ADSL выбрана из-за следующих достоинств:

- легкость установки оборудования

- относительно невысокая стоимость

4.2.1 Технология Ethernet

Самой характерной чертой Ethernet является метод доступа к среде передачи - CSMA/CD (carrier-sense multiple access/collision detection) - множественный доступ с обнаружением несущей. Перед началом передачи данных сетевой адаптер Ethernet "прослушивает" сеть, чтобы удостовериться, что никто больше ее не использует. Если среда передачи в данный момент кем-то используется, адаптер задерживает передачу, если же нет, то начинает передавать. В том случае, когда два адаптера, предварительно прослушав сетевой трафик и обнаружив "тишину", начинают передачу одновременно, происходит коллизия. При обнаружении адаптером коллизии обе передачи прерываются, и адаптеры повторяют передачу спустя некоторое случайное время (естественно, предварительно опять прослушав канал на предмет занятости). Для приема информации адаптер должен принимать все пакеты в сети, чтобы определить, не он ли является адресатом.

Ethernet Fast Ethernet Gigabit Ethernet
Номинальная скорость передачи информации, Мбит/с 10 100 1000
Среда передачи Витая пара, коаксиал, оптоволокно Витая пара, оптоволокно Витая пара, оптоволокно
Варианты реализации 10 Base2,
10 BaseT,
10 Base5, 1
Base5, 10
Broad36
100 Base-TX,
100 Base-FX,
100 Base-T4
1000Base-X
1000Base-LX
1000Base-SX
1000Base-CX
1000Base-T
Топология Шина, звезда Звезда Звезда

Основной недостаток сетей Ethernet обусловлен методом доступа к среде передачи: при наличии в сети большого количества одновременно передающих станций растет количество коллизий, а пропускная способность сети падает. В экстремальных случаях скорость передачи в сети может упасть до нуля. Но даже в сети, где средняя нагрузка не превышает максимально допустимую рекомендованную (30-40% от общей полосы пропускания), скорость передачи составляет 70-80% от номинальной. В некоторой степени этот недостаток может быть устранен применением коммутаторов (switch) вместо концентраторов (hub). При этом трафик между портами, подключенными к передающему и принимающему сетевым адаптерам, изолируется от других портов и адаптеров.

К-во Просмотров: 241
Бесплатно скачать Реферат: Проектирование сети офиса банка