Реферат: Прогнозирование с учетом фактора старения информации
3. условия неопределенности (исходная информация содержит величины, для которых неточно известно или совсем не известно вероятностное описание).
Последнее условие является наиболее типичным при проведении микроэкономического экспресс-анализа.
Наличие ряда ситуаций, обладающих той или иной степенью неопределенности, требуют для своего описания привлечения математического аппарата, который бы априори включал в себя вероятность появления неопределенности и ее мер.
Вводимое в рассмотрение понятие меры неопределенности должно удовлетворять вполне очевидным требованиям.
Мера неопределенности должна быть функционалом и не зависеть от конкретных значений случайной величины, непрерывной относительно аргументов, равной нулю при отсутствии всякой неопределенности, аддитивной, а так же иметь максимум, отражающий наибольшую неопределенность.
Чаще всего в качестве меры неопределенности случайного объекта исследования с конечным множеством состояний А1 ,А2 ,...,Аn с соответствующими вероятностями p1 ,p2 ,…,pn используется энтропия Шеннона
(1.1)
Энтропия Шеннона является мерой неопределённости конечной схемы и обладает, как нетрудно заметить, рядом свойств, удовлетворяющим весьма общим приведённым выше требованиям.
Непрерывные случайные объекты не допускают введения конечной абсолютной меры неопределённости. В качестве относительной меры неопределённости количественной меры используется дифференциальная энтропия:
(1.2)
где f(x) – плотность распределения случайной величины х.
Можно указать и на некоторые другие меры неопределённости, удовлетворяющие общим требованиям:
(1.3)
(1.4)
(1.5)
(1.6)
(1.7)
(1.8)
Мера неопределённости второго рода (1.3) обладает тем свойством, отличным от остальных мер, что её максимум достигается на так называемых оценках Фишборна:
(1.9)
для простого отношения порядка предпочтения
,
что весьма важно для решения задач микроэкономического анализа, опирающегося на факты качественного, а не количественного содержания.
Вполне очевидно, что использование такой меры неопределенности допускает обобщение оценок Фишборна на более сложные отношения предпочтения, возникающие при анализе экономической ситуации.
Таким образом, для преодоления трудностей, возникающих в микроэкономическом анализе, обусловленных наличием фактора неопределенности, должна быть сформирована концепция информационно-статистического подхода к построению математических моделей и разработаны методы оценивания показателей по ограниченной информации с учетом сложного характера связей, присущих экономической системе при ее взаимодействии со средой. В математическом отношении это выражается, прежде всего, в разработке и применении вариационных принципов и методов, определяющих процедуру выбора экстремальных распределений случайных величин, которые содержат информацию не более того количества, которым располагает исследователь.
Весьма трудной проблемой является оценка микроэкономических показателей, статистическое обследование которых затрудняется чрезвычайно малым объемом наблюдений.
Теория оценивания по малому числу наблюдений, для многих задач которой типична неасимптотическая постановка проблем, еще нуждается в научном обосновании и разработке.
Сложность постановки и решения задач построения наилучших оценок для данной схемы при ограниченном объеме статистического материала обусловлена тем обстоятельством, что искомое решение часто в сильной степени зависит от конкретного типа распределения, объема выборки и не может быть объектом достаточно общей математической теории. Очевидно, что теория малых выборок из нормального распределения будет отличаться от теории малых выборок из равномерного распределения и т.д. С другой стороны необходимость разработки расчетно-экспериментальных методов оценивания микроэкономических показателей возникает из весьма важных задач.
По поводу определения понятия “малая выборка” существуют различные мнения. Так, например, одни утверждают, что если для принятия решения не хватает статистического материала, то надо прежде всего разрабатывать методы получения недостающих данных (“купить недостаточную информацию”).Очевидно, что в этом случае не берется в расчет объективная необходимость получить решения в условиях, когда дополнительную информацию при микроэкономическом анализе привлечь просто нет никакой возможности. Попытка определить малую выборку некоторым пределом числа наблюдений (n=10 , например), ниже которого известные (традиционные) методы не дают необходимой обоснованности принимаемых решений, тоже не выдерживает критики, так как во всех этих подходах связь понятия “малая выборка” не увязывается на модельном уровне исследований с методами ее анализа.
Основным условием успешного анализа (извлечением из данной выборки требуемой информации) служит возможность принятия решения. Следовательно, критерием понятия “малая выборка” может служить достоверность принимаемого на ее основе решения. Традиционными в математической статистике показателями, характеризующими достоверность принимаемого решения, являются ошибки первого и второго рода (вероятности отвергнуть гипотезу, когда она верна, принять гипотезу, когда она неверна, соответственно). Не вдаваясь в теоретическое содержание ошибок первого и второго рода, заметим, что в общем случае решение можно считать обоснованным, если выполняется неравенство:
(1.10)
Следовательно, если применяемый аналитический аппарат с соответствующим статистическим критерием при анализе выборки данного объема не позволяет получить условие (1.10), то для принятия достоверного решения в этом случае выборка считается малой. Тем не менее, традиционно сложилось так, что в математической статистике широкое распространение получили критерии согласия и критерий Колмогорова. Безоговорочное применение этих критериев привело к формированию такого интуитивного понятия как эффект малой и большой выборки. Очевидно, что необходимость введения этого понятия обусловлено объективным существованием пределов работоспособности перечисленных выше критериев.
Таким образом, случайную выборку наблюдаемых значений микроэкономических показателей можно считать малой, если извлекаемая из нее с помощью определенного математического аппарата информация не может служить основанием для принятия достоверного решения, удовлетворяющего цели исследования.
Объектом исследования в микроэкономическом экспресс-анализе является, как правило, малая выборка случайных наблюдений, для которых традиционные критерии математической статистики неработоспособны. Очевидно, что результаты этого анализа для малых выборок будут зависеть от положенного в их основу аналитического аппарата, обеспечивающего такую статистическую интерпретацию результатов наблюдений, которая позволяла бы выборку рассматривать как некий эмпирический аналог генеральной совокупности, о свойствах которой в целом или о возможных выборках из нее можно судить о свойствах некоторых функций от случайно наблюдаемых величин (статистик).
2.ПРОГНОЗИРОВАНИЕ МИКРОЭКОНОМИЧЕСКИХ
ПОКАЗАТЕЛЕЙ И ПРОЦЕССОВ
2.1.Направления и методы прогнозных исследований в микроэкономике и учёт фактора старения предпрогнозной информации
Движущей силой экономической деятельности является спрос, отражающий поведение массового потребителя на изменение цен товара. Величина спроса определяется количеством товара, которое массовый потребитель добровольно покупает в течении некого периода, ценой данного товара и рядом других факторов. Для анализа экономической деятельности, прогнозирования и управления экономическими процессами принципиальное значение имеют выявление закономерностей спроса на товар от его цены. Следует заметить, что применение экономических методов в микроэкономическом анализе базируется на использовании предельных величин и, как правило, на детерминистическом подходе. Считается , что отказ от предельных показателей затрат, прибыли и других показателей означает невозможность использование математических методов в экономике.
Однако в условиях гибкого рынка цена товара, спрос на него меняется не только в течении месяца, но и в течении недели и даже дня. Поэтому выявление и постоянное уточнение основной закономерности, описывающей зависимость количества единиц товара, приобретаемое в течении некоторого периода, от его цены должно базироваться на прогнозных исследованиях.
Опыт проведения прогнозных исследований в различных областях общественной жизни, науки и техники позволил выявить ряд методов, которые могут эффективно применяться для прогнозирования микроэкономических показателей. Любая типовая методика прогнозирования включает такие необходимые элементы как выполнение предпрогнозной ориентации (определение предмета, целей, задач и периода упреждения); создание предпрогнозного фона (сбор и анализ данных в интервале ретроспекции); формирование исходной базовой модели и конструирование поисковой модели, ее верификация, а при необходимости уточнение, подготовка, обоснование и принятие необходимых решений.
Поскольку узловым этапом является построение модели прогноза, известные методы прогнозирования удобно классифицировать, разделив их на 3 основные группы:
· эвристические;