Реферат: Производственная функция и технологическая результативность производства

На рис. 3.2 графически представлена информация, содержащаяся в табл. 3.2 .

Выпуск в месяц

Труд в месяц

Выпуск в месяц

Труд в месяц

Рис. 3.2. Производство с одним переменным фактором.


Рисунок 3.2,а по­казывает, что объем выпуска растет, пока не достигает максимума в 112 единиц, и после этого снижается. Эта часть кривой совокупного выпуска продукции обозначена пунктиром, чтобы показать, что производство при затратах труда более 8 единиц технологически неэффективно и, следовательно, не является частью производственной функции; технологическая эффективность исклю­чает возможность отрицательного предельного продукта. На рис. 3.2,б показа­ны кривые среднего и предельного продуктов. (Для кривой предельного про­дукта по оси ординат отложен не совокупный объем выпуска, как указано на рисунке, а объем на единицу затрат труда.) Заметим, что предельный продукт всегда положителен при увеличении выпуска продукции и отрицателен при его снижении.

Кривая предельного продукта пересекает на графике горизонтальную ось в точке максимума совокупного продукта не случайно. Это происходит потому, что добавление одного рабочего на производственный конвейер в нашем случае замедляет работу конвейера и снижает совокупный объем выпуска, что делает предельный продукт этого рабочего отрицательным.

Кривые среднего и предельного продуктов тесно связаны между собой. Когда предельный продукт больше среднего, средний продукт увеличивается, как это происходит при затратах в интервале между 1 и 4 на рис. 3.2,б.

Аналогичным образом, когда предельный продукт меньше среднего, средний продукт должен снижаться, как показано на рис. 3.2,б для интервала затрат между 4 и 10.

Поскольку предельный продукт больше среднего, когда тот увеличивается, и ниже, когда тот убывает, он должен быть равен среднему продукту, когда по­следний достигает своего максимума, как показано на рис. 3.2,б в точке Е.

Графически взаимосвязь между совокупным продуктом и кривыми среднего и предельного продуктов показана на рис. 3.2,а. Средний продукт труда пред­ставляет собой совокупный продукт, деленный на количество труда. Например, в точке В средний продукт равен объему выпуска 60, деленному на 3 единицы труда, т. е. 20 единицам выпускаемой продукции на единицу труда. Но это есть не что иное, как угловой коэффициент наклона прямой, проведенной из начала координат в точку В на рис. 3.2,а.

В общем случае средний продукт труда зада­ется угловым коэффициентом (тангенсом угла наклона) прямой, проведенной из начала координат в соответствующую точку на кривой совокупного выпуска продукции.

Предельный продукт труда представляет собой изменение совокупного про­дукта при увеличении затрат труда на единицу. Например, в точке А предель­ный продукт равен 20 единицам, потому что угловой коэффициент касательной к кривой выпуска продукции равен 20. В общем случае предельный продукт труда в какой-либо точке равен угловому коэффициенту касательной к кривой совокупного выпуска продукции в этой точке.

На рис. 3.2,а можно увидеть, что предельный продукт труда сначала возрастает, достигает пика при затратах, равных 3 единицам труда, а затем снижается по мере движения вдоль кривой к точкам С и D . В точке D , когда совокупный объем выпуска максимален, наклон касательной к кривой совокупного выпуска продукции равен 0, так же как и предельный продукт. После этой точки предельный продукт становится отри­цательным.

Отметим графическую связь между средним и предельным продуктами. В точке В предельный продукт труда (угловой коэффициент касательной к кривой совокупного выпуска продукции в точке В — на рисунке он не показан) больше среднего продукта (пунктирная линия ОВ). В результате средний продукт труда увеличивается по мере продвижения из В в С. В точке С средний и предельный продукты труда равны — средний продукт определяется как угловой коэффи­циент прямой ОС, а предельный продукт— как угловой коэффициент касатель­ной к кривой совокупного выпуска продукции в точке С. Наконец, при движении из С в D предельный продукт меньше среднего продукта труда; угловой коэффициент касательной к кривой совокупного объема выпуска в любой точке между С и D меньше углового коэффициента прямой, соединяющей начало координат и эту точку.

3.2. Закон убывающей производительности.

Тенденция к сокращению предельного продукта труда (и предельного продукта других факторов) действует в большинстве производственных процессов. Для описа­ния этого явления часто используется “закон убывающей производительности”.

Закон убывающей производительности гласит, что при по­следовательном увеличении любого производственного фактора на единицу (и при постоянстве остальных факторов) приросты объемов выпуска начиная с некоторого момента уменьшаются. Когда затраты труда малы (и капитал по­стоянен), небольшой прирост затрат труда существенно увеличивает выпуск продукции, так как рабочие получают возможность дополнительной специали­зации. Однако, в конце концов, вступает в силу закон убывающей производи­тельности. Когда рабочих становится слишком много, некоторые из них исполь­зуются неэффективно и предельный продукт труда снижается.

Закон убывающей производительности обычно выполняется в краткосроч­ном периоде, когда, по меньшей мере, один фактор постоянен. Но его можно использовать и для долгосрочного периода. Даже если в долгосрочном периоде все факторы производства изменяются, у управляющего компанией может воз­никнуть необходимость рассмотреть бизнес-планы, в которых один или не­сколько факторов фиксированы. Предположим, например, что существуют только два возможных размера завода и управляющий должен выбрать, какой завод построить. В этом случае ему необходимо узнать, когда начнет действо­вать закон убывающей производительности в каждом из вариантов. [18]

Закон убывающей производительности действует при любой заданной тех­нологии производства. Со временем, однако, изобретения и другие технологиче­ские усовершенствования могут привести к тому, что кривая совокупного вы­пуска продукции (рис. 3.2,а) сместится вверх и. таким образом, большего объема выпуска можно добиться при тех же самых факторах. Рисунок 3.3 иллюстрирует такую возможность. Первоначальная кривая выпуска продукции — О1 , но усо­вершенствование в технологии вызывает ее смещение вверх, сначала в положе­ние О2 , а затем О3 .

Выпуск продукции в единицу времени

Труд в единицу времени

100


Рис. 3.3. Влияние технологических усовершенствований.

Предположим, что с течением времени увеличилось количество труда, ис­пользуемого в производстве, и одновременно были произведены технологиче­ские усовершенствования. Тогда объем выпуска продукции меняется от уровня, соответствующего точке А (при затратах труда 6 единиц на кривой О1 ), до уров­ня в точке В (при затратах 7 единиц на кривой О2 ) и далее до уровня в точке С (при затратах 8 единиц на кривой О3 ). При переходе из А в В и С расширение производства сопровождается увеличением затрат труда, и поэтому кажется, что закон убывающей производительности не действует, хотя на самом деле он выполняется. При затратах больше 6 единиц каждая отдельная кривая продукта характеризуется уменьшением отдачи от труда.

Смещение кривых совокупного выпуска продукции компенсирует действие закона убывающей производительности и означает, что он может не оказывать отрицательного влияния на экономический рост в долгосрочном периоде. Фак­тически, неучет совершенствования технологии в долгосрочном периоде привел британского экономиста Томаса Мальтуса к неверному прогнозу ужасных последствий постоянного роста населения.

4. Производство с двумя переменными факторами.

Рассмотрим производственную стратегию фирмы с двумя переменными факторами в долгосрочном периоде. Изучить альтерна­тивные способы производства можно, проанализировав форму ряда изоквант.

Изокванта описывает все комбинации факторов производст­ва, позволяющих получить одинаковый объем выпуска. Изокванты на рис. 4.4 имеют наклон вниз, так как предельные продукты и труда, и капитала положительны. Увеличение любого из факторов расширяет производство; следовательно, если объем выпуска поддерживается постоянным, то, чем больше используется одного фактора, тем меньше должно использоваться другого. [9]

В долгосрочном периоде, когда количества и труда, и капитала изменяются, оба фактора производства могут характеризоваться убывающей производитель­ностью. По мере движения из точки А в точку С убывает производительность труда, при движении из D к С — производительность капитала.


Рис. 4.4. Форма изоквант.

4.1. Убывающая производительность

В данном примере действует закон убывающей производительности и труда, и капитала. Чтобы увидеть, почему сокращается отдача от труда (убывает его производительность), проведем горизонтальную линию при определенном объ­еме капитала, скажем, в 3 единицы. Взглянув на объемы выпуска на каждой изокванте по мере роста количества труда, мы заметим, что каждая дополнительная единица труда дает все меньший и меньший прирост выпуска продукции. Так, когда количество труда возрастает с 1 единицы до 2 (от А до В), выпуск повы­шается на 20 единиц (с 55 до 75). Однако когда его количество увеличивается еще на одну дополнительную единицу (от В до С), выпуск повышается лишь на 15 единиц (с 75 до 90). Таким образом, закон убывающей производительности действует по отношению к труду как в долгосрочном, так и в краткосрочном периоде. Из-за того что увеличение использования одного фактора при посто­янном применении другого приводит ко все более и более низкому приросту выпускаемой продукции, изокванта должна становиться более крутой при заме­щении труда капиталом и более плоской, когда капитал замещается трудом. [3]

Закон убывающей производительности действует и по отношению к капиталу. При постоянном количестве груда предельный продукт капитала снижается с рос­том капитала. Например, если капитал увеличивается с 1 единицы до 2, а труд остается постоянным и равным 3 единицам, то предельный продукт капитала равен 20 единицам (75 - 55); он снижается до 15 (90 - 75), когда капитал воз­растает с 2 единиц до 3.

4.2. Замещение производственных факторов

Угловой коэффициент любой изокванты показывает возможность замены одного из факторов другим при сохранении постоянного объема выпуска*. Абсолютное значение углового коэффициента называется предельной нормой технологического замещения ( MRTS). Предельная норма технологического замещения капитала трудом — величина, на которую может быть сокращен капитал за счет использования од­ной дополнительной единицы труда при постоянном объеме выпуска продук­ции. Она аналогична предельной норме замещения ( MRS), упоминавшейся r теории потребления. Подобно MRS, MRTS всегда является положительной вели­чиной. Математически она выражается следующим образом:

К-во Просмотров: 271
Бесплатно скачать Реферат: Производственная функция и технологическая результативность производства