Реферат: Производственные системы с искусственным интеллектом
Производственные системы с искусственным интеллектом являются системами не только качественно нового типа, но и системами, составляющими органичное звено в структуре современных автоматических систем управления производством.
1. Новая информационная технология в системах управления производством
1.1. Эволюция систем управления производством
Как известно, управление технологическими процессами вплоть до 60-х годов основывалось на применении несложных регуляторов механического, электрического и пневматического типов, расчет которых базировался на линейных одномерных моделях.
Проектирование более сложных систем управления ограничивалось как возможностями технических средств и недостаточной теоретической базой, так и относительной простотой большинства технологических процессов того времени.
Примерно к тому же времени относятся первые попытки применения ЭВМ в планировании и управлении производством. Правда техническая база оставалась еще слабой. ЭВМ первого поколения, на которых базировалась разработка АСУ были мало пригодны для решения задач управления производством. Поэтому ЭВМ применялись в основном для бухгалтерского учета.
Применение ЭВМ второго поколения, а также работы в области методологии проектирования и внедрения АСУ позволили поставить задачу управления предприятием в рамках функциональных подсистем. Опыт эксплуатации АСУП, внедренных в конце
60-х годов, показал их эффективность, проявившуюся в улучшении планирования и учета производства. Но достигнутый научно-технический уровень АСУП не удовлетворял ни разработчиков, ни заказчиков. Невозможно было обрабатывать данные в реальном масштабе времени.
Высокоэффективные и надежные (для того времени) ЭВМ третьего поколения позволили перейти к более сложным формам организации систем управления тех. объектами. Поддержание процесса вблизи оптимальной рабочей точки обеспечивалось путем оперативного воздействия на него, т.е. значения вычисленных установок преобразуются в настройки регуляторов. Функции оператора-технолога сводятся к наблюдению и вмешательству при аварийных ситуациях. Однако для ряда промышленных объектов реализация данных форм организации систем управления оказалась невозможной. Тогда появились адаптивные самообучающиеся и самообучающиеся системы. Несмотря на то, что в теории обучающихся и самообучающихся автоматических систем были получены важные результаты, промышленное применение их было достаточно ограничено из-за отсутствия доступных инженерных методов синтеза и технической реализации алгоритмов таких систем.
Современные АСУ не могут обходиться без наличия в них специальных средств организации диалога с человеком. Конечные пользователи, осознавая возможности, которые может сегодня предоставить им вычислительная техник, претендуют на непосредственный контакт с ПК или интеллектуальными терминалами. В большинстве внедренных систем управления этот контакт ограничивается простейшими режимами диалога и помогает пользователю выбирать подходящий вычислительный алгоритм, определять и задавать свои предложения относительно вывода решения, представления результатов. Более развитые средства дают возможность организовывать диалог с самой моделью для осуществления ее информационных и структурных модификаций. Именно взаимодействие конечного пользователя с оптимизационными моделями в процессе принятия управленческих решений представляет в настоящее время наибольший интерес и значительные трудности.
1.2. ПСИИ – системы, базирующиеся на знаниях
Исторически теоретические наработки в области искусственного интеллекта велись в двух основных направлениях
Первое направление связано с попытками разработки интеллектуальных машин путем моделирования их биологического прототипа – человеческого мозга. Оптимизм кибернетиков 50-х годов, возлагавших надежды на данное направление не увенчался успехом ввиду непригодности для этих целей существовавших тогда аппаратных и программных средств.
Второе направление – разработка методов, приемов, устройств и программ для ЭВМ, обеспечивающих решение сложных математических и логических задач, позволяющих автоматизировать отдельные интеллектуальные действия человека. Первым шагом в этом направлении можно считать разработку GPS-универсального решателя задач. В его основу было положено представление об эвристическом поиске, в процессе которого обеспечивалось разбиение задачи на подзадачи до тех пор, пока не будет получена легко решаемая подзадача.
Попытки уйти от неоправдавших себя универсальных эвристик при решении интеллектуальных задач привели к заключению о том, что главное, чем располагает специалист, - это накопленный им в процессе своей профессиональной деятельности некоторый набор разнообразных приемов и неформальных правил. Впоследствии была разработана ЭС Dendral, базирующаяся на знаниях, которая явилась прототипом всех последующих ЭС.
Базовая структура “системы, базирующейся на знаниях” состоит из следующих блоков: базы знаний, содержащей знания о некоторой ограниченной предметной области; решателя, или блока логического вывода, осуществляющего активизацию знаний, соответствующих текущей ситуации; блока верификации БЗ, обеспечивающего добавление новых знаний и корректировку уже существующих; блока объяснения, позволяющего пользователю прослеживать всю цепочку рассуждений системы, приводящих к конечному результату, и, наконец, интерфейса, обеспечивающего удобную связь между пользователем и системой.
Существует множество доводов в пользу того, что ПСИИ могут и должны стать важнейшей составной частью в технологии современных производств.
Главная проблема, стоящая перед предприятием, в смысле управления, - это проблема преодоления сложности при выборе из множества решений. Это может быть инженерный выбор решения, выбор расписания и т.д.
Управление производством требует обработки большого объема информации. Проблема получения информации с объектов в реальном времени решена. Появилась другая проблема: как уменьшить долю информации до уровня, который необходим для принятия решения? Потеря же информации может существенно сказать на конечном результате.
Нехватка времени на принятие решения – еще одна проблема, которая проявляется по мере усложнения производства. Не менее важна и проблема координации. Если проектирование не оптимально по отношению к стадиям производства, складирования, распределения, то это может увеличить цену производства и снизить качество изделий.
И, наконец, очень важный фактор – необходимость сохранения и распределения знаний отдельных опытных экспертов, полученных ими в процессе многолетней работы и большого практического опыта. Проблема извлечения знаний и их распределения – сегодня одна из главных проблем производственных организаций.
Таким образом, необходима автоматизация интеллектуальной деятельности человека в производственных системах управления.
2. Представление знаний в ПСИИ
Важное место в теории искусственного интеллекта занимает проблема представления знаний, являющаяся, по мнению многих исследователей, ключевой. Что же представляют собой знания и в чем их отличие от данных?
Знания представляют собой совокупность сведений (у индивидуума, общества или у системы ИИ) о мире ( конкретной предметной области, совокупности объектов или объекта), включающих в себя информацию о свойствах объектов, закономерностях процессов и явлений, правилах использования этой информации для принятия решений.
Первоначально вычислительная техника была ориентирована на обработку данных. Это было связано как с уровнем развития техники и программного обеспечения, так и со спецификой решаемых задач. Дальнейшее усложнение решаемых задач, их интеллектуализация, развитие ВТ ставят задачу создания машин обработки знаний. Существенным отличием знаний от данных является их интерпретируемость.
Если для интерпретации данных необходимы соответствующие программы и сами по себе они не несут содержательной информации, то знания всегда содержательны. Другой отличительной чертой знаний является наличие отношений, например, вида “тип-подтип“, “элемент-множество“ и т.д. Знания характеризуются наличием ситуативных связей, определяющих ситуативную совместимость отдельных событий и фактов, позволяющих устанавливать причинно-следственные связи.
Некоторые исследователи предпринимали попытки определить типы знаний, которые должны быть представлены в системах ИИ. Так, например, этот перечень может охватывать: структуру, форму, свойства, функции и возможные состояния объекта; возможные отношения между объектами, возможные события, в которых эти объекты могут участвовать; физические законы; возможные намерения, цели, планы, соглашения..
Нередко представление знаний провозглашается ядром ИИ, а исследование механизмов представления – определяющей чертой ИИ. Так, Н. Нильсон считает, что “искусственный интеллект – это наука знаний, - как представлять знания, как получать и использовать их“