Реферат: Производственные системы с искусственным интеллектом

Можно выделить ряд общих для всех систем представления знаний (СПЗ) черт. А именно:

Все СПЗ имеют дело с двумя мирами – представляемым и представляющим. Вместе они образуют систему для представления. Существует также ряд общих для всех СПЗ проблем. К ним можно отнести, в частности, проблемы: приобретения новых знаний и их взаимодействие с уже существующими, организации ассоциативных связей, неоднозначности и выбора семантических примитивов, явности знаний и доступности, выбора соотношения декларативной и процедуральной составляющих представления, что влияет на экономичность системы, полноту, легкость кодировки и понимания.

Модели представления знаний можно условно разделить на декларативные и процедуральные.

Декларативная модель основывается на предположении, что проблема представления некоей предметной области решается независимо от того, как эти знания потом будут использоваться. Поэтому модель как бы состоит из двух частей: статических описательных структур знаний и механизма вывода, оперирующего этими структурами и практически независимого от их содержательного наполнения. При этом в какой-то степени оказываются раздельными синтаксические и семантические аспекты знания, что является определенным достоинством указанных форм представления из-за возможности достижения их определенной универсальности.

В декларативных моделях не содержатся в явном виде описания выполняемых процедур. Эти модели представляют собой обычно множество утверждений. Предметная область представляется в виде синтаксического описания ее состояния (по возможности полного). Вывод решений основывается в основном на процедурах поиска в пространстве состояний

В процедуральном представлении знания содержатся в процедурах – небольших программках, которые определяют, как выполнять специфичные действия (как поступать в специфичных ситуациях). При этом можно не описывать все возможные состояния среды или объекта для реализации вывода. Достаточно хранить некоторые начальные состояния и процедуры, генерирующие необходимые описания ситуаций и действий.

Семантика непосредственно заложена в описание элементов базы знаний, за счет чего повышается эффективность поиска решений. Статическая база знаний мала по сравнению с процедуральной частью. Она содержит так называемые “утверждения“, которые приемлемы в данный момент, но могут быть изменены или удалены в любой момент. Общие знания и правила вывода представлены в виде специальных целенаправленных процедур, активизирующихся по мере надобности. Процедуры могут активизировать друг друга, их выполнение может прерываться, а затем возобновляться. Возможно использование процедур - “демонов“, активизирующихся при выполнении операций введения, изменения или удаления данных.

Средством повышения эффективности генерации вывода в процедуральных моделях является добавление в систему знаний о применении, т.е. знаний о том, каким образом использовать накопленные знания для решения конкретной задачи. Эти знания, как правило, тоже представляются в процедуральной форме.

Главное преимущество процедуральных моделей представления знаний заключается в большей эффективности механизмов вывода за счет введения дополнительных знаний о применении, что, однако снижает их общность. Другое важное преимущество заключено в выразительной силе. Эти системы способны смоделировать практически любую модель представления знаний. Выразительная сила процедуральных систем проявляется в расширенной системе выводов, реализуемых в них. Большинство расширенных форм выводов может быть охарактеризовано понятием “предположение об отсутствии“ и сводится к схеме: “Если А (предварительное условие) – истинно и нет доказательств против В, то предложить В“. Подобные правила вывода оказываются полезными в основном в двух случаях:

1. Неполнота знаний. Если в системе представления отдельные факты не представлены или невыводимы, правила вывода позволяют гипотетически признавать их верными при условии, что в системе нет или в ней невыводимы доказательства противного.

2. Вывод в условиях ограниченности ресурсов. Из-за ограниченности ресурсов процессы вывода не могут завершиться, а должны быть оставлены для получения результатов. В этом случае правила определяют дальнейшие действия системы.

Системы представления, содержащие подобные правила, оказываются немонотонными, т.е. добавление новых утверждений может запретить генерацию вывода, который первоначально мог быть получен. Добавление новых фактов может привести к возникновению противоречий. В некоторых системах кроме самих утверждений содержатся также записи причин, по которым были приняты эти утверждения. При добавлении новых фактов осуществляется проверка того, сохраняются ли справедливость утверждений и соответствие причинам.

Рассмотрим различные формы моделей представления знаний.

Продукционные модели представляют собой набор правил в виде “условие - действие“, где условия являются утверждениями о содержимом БД (фактов), а действия есть некоторые процедуры, которые могут модифицировать содержимое БД. Продукционные модели из-за модульного представления знаний, легкого расширения и модификации нашли широкое применение в экспертных системах.

Другая важная схема представления знаний – семантические сети, представляющие собой направленный граф, в котором вершинам ставятся в соответствие конкретные объекты, а дугам, их связывающим, - семантические отношения между этими объектами. Семантические сети могут использоваться как для декларативных, так и для процедуральных знаний.

Перспективной формой представления знаний являются фреймы, которые быстро завоевали популярность у разработчиков систем ИИ благодаря своей универсальности и гибкости.

Принципиальным методом для логического представления знаний является использование логики предикатов первого порядка (исчисление предикатов). При таком подходе знания о некоторой предметной области могут рассматриваться как совокупность логических формул. Изменения в модели представления знаний происходят в результате добавления или удаления логических формул.

В редукционных моделях осуществляется декомпозиция исходной задачи на ряд подзадач, решая которые последовательно определяют решение поставленной задачи.

Логические представления легки для понимания и располагают правилами вывода, необходимыми для операций над ними. Однако в логических моделях представление знаний отношения между элементами знаний выражаются ограниченным набором средств используемой формальной системы, что не позволяет в полной мере отразить специфику предметной области. Недостатком логического представления является также тенденция потреблять большие объемы памяти ЭВМ.

Ряд понятий человеческих знаний оказывается трудно, а иногда и невозможно описать количественно, используя детерминированные или стохастические методы. Трудности возникают при создании моделей не полностью определенных, неточных, нечетких знаний. Это связано с тем, что человеческому мышлению присуща лингвистическая неопределенность; знания и понятия, которыми оперирует человек, часто имеют качественную природу, они ситуативны, бывают неполными. Для формализации знаний такого типа используется аппарат теории нечетких множеств, создание которого связано с именем известного американского ученого Л. Заде.

Неточность, неопределенность или неполнота, заключенные в смысловых значениях или выводах, присущи естественным языкам с их сложной структурой и многообразием понятий. Различают несколько типов неопределенности в прикладных системах ИИ. Первый связан с ненадежностью исходной информации – неточность измерений, неопределенность понятий и терминов, неуверенностью экспертов в своих заключениях.

Второй – обусловлен нечеткостью языка представления правил, например в экспертных системах. Неопределенность возникает также, когда вывод в ПСИИ базируется на неполной информации, т.е. нечетких посылках. Еще один тип неопределенности может появляться при агрегации правил, исходящих от разных источников знаний или от разных экспертов. Эти правила могут быть противоречивыми или избыточными.

В заключение необходимо отметить, что деление моделей представления знаний на декларативные и процедуральные весьма условно, так как в реальных системах представления знаний используются в равной мере элементы и сочетания всех указанных выше форм моделей представления знаний.


3. Архитектура ПСИИ

3.1. Структура ПСИИ

Говоря об архитектуре систем ИИ, прежде всего понимают организацию структуры, в рамках которой происходило бы применение знаний и решение проблем в конкретной предметной области. Выбор соответствующей структуры, свойства и функции компонентов систем ИИ, в особенности производственных, определяется и направляется формулируемыми принципами инженерии знаний. На формирование этих принципов в значительной степени оказывают влияние, как специфика предметной области, так и характер задач и функций, решение которых возлагается на ПСИИ.

В зависимости от характера выполняемых функций и области действий эксперты выполняют несколько характерных задач, которые являются типичными. Эти задачи следующие: интерпретация, планирование, управление, проектирование, диспетчирование и мониторинг, прогнозирование, диагностика. А главное – эксперт способен обновлять свои знания, объяснять действия, обосновывать решения, прогнозировать развитие ситуаций, активно взаимодействовать с внешней средой и воспринимать информацию различного характера, получать решения на основе имеющихся знаний, хранить в памяти необходимую информацию и фактографические данные.

Таким образом, чтобы создать систему, работающую со знаниями и способную в какой-то мере заменить эксперта или помочь ему в принятии решений при управлении производством, необходимо заложить в архитектуру системы возможности по реализации названных функций. На рисунке представлена обобщенная структура и компоненты ПСИИ, а также ее окружение.

К-во Просмотров: 287
Бесплатно скачать Реферат: Производственные системы с искусственным интеллектом