Реферат: Производственные системы с искусственным интеллектом
Далее следует описание основных частей ПСИИ.
3.2. База знаний
Основу – ядро любой ПСИИ – составляют база знаний и заложенный в систему механизм вывода решений. Если говорить обобщенно, эти компоненты определяют две основные интеллектуальные характеристики системы: способность хранить знания о чем-то и умение оперировать этими знаниями. Более развитым системам, основанным на знаниях, присуща, также способность обучаться, т.е. приобретать новые знания, расширять БЗ, корректировать знания в соответствии с изменяющимися условиями и ситуацией в предметной области.
При проектировании ПСИИ значительные усилия и время затрачиваются на разработку БЗ, т.е. накопление знаний, создание модели представления знаний, их структурирование, заполнение БЗ и дальнейшее поддержание ее в актуальном состоянии. Прежде чем приступить к проектированию и реализации БЗ, разработчикам необходимо осмыслить и разрешить ряд вопросов, непосредственно связанных с процессом создания БЗ и ПСИИ в целом. Вот круг задач, решаемых на начальном этапе разработки (при условии, что вопрос о целесообразности разработки ПСИИ в этой области решен положительно):
Изучение проблемной области (объекта, задач, целей), т.е. “что представлять в БЗ“ и “для чего представлять“; определение понятия “знание“ в контексте исследуемой проблемной области; выявление источников знаний, активная и кропотливая работа с ними; определение типов знаний для решения задачи; оценка на основе исследования проблемной области и характера знаний пространства поиска решений с целью выбора способа структуризации знаний и метода поиска решений (механизма вывода); определение способа структуризации знаний, т.е. того, “как представлять знания“; выбор способа представления знаний; определение структуры БЗ; определение характера взаимодействия структурных частей БЗ, а также взаимодействия ее с другими компонентами ПСИИ в процессе поиска решений; подготовка к процессу заполнения БЗ.
3.3. Механизм вывода
Характер поиска необходимых знаний в БЗ, способ организации вывода решений определяются стратегией управления интеллектуальной системы. Стратегия управления представляет собой средство, использующее рассуждения или осуществляющее выводы о знаниях, содержащихся в БЗ. Сформулируем более точно функции механизма вывода и стратегий управления.
Механизм вывода реализует общую встраиваемую схему поиска решений. Стратегии управления обеспечивают разнообразное управление в рамках принятой для данной системы схемы механизма вывода. Другими словами, стратегия управления определяет последовательность и содержание действий при реализации механизма вывода. Она может составлять часть метауровня знаний, т.к. является знанием, которое рассуждает о другом знании, содержащемся в системе.
Наиболее часто реализуемый вариант структуры взаимодействия решающих компонентов систем ИИ включает в себя БЗ, рабочую память (глобальную БД) и управляющую структуру. Работа управляющей структуры в общем случае заключается в анализе состояния рабочей памяти и выявлении по описанию характера и типа данных в рабочей памяти в БЗ знаний (правил, объектов или фактов), соотносимых с этим описанием. Т.е. в БЗ определяется некий подходящий блок знаний (или набор блоков), готовый работать в соответствии с текущими данными рабочей памяти.
Процесс реализации стратегии вывода проходит через четыре основных стадии: выбор, сопоставление, разрешение конфликтов, выполнение.
3.4. Диалоговый интерфейс
Производственные системы ИИ функционируют в подавляющем большинстве реализаций, а интерактивном режиме с пользователями, поэтому они должны обладать дружелюбным интерфейсом, позволяющим человеку легко и в удобной для него форме взаимодействовать с ее компонентами. Общение человека и ПСИИ могут обеспечивать и реализовывать различные программные и технические средства ввода и вывода информации. Взаимодействие пользователя с компьютером возможно посредством речи, сенсорного экрана введения текстов на естественном языке, изображений, работы с графикой, полиэкранным дисплеем, манипулятором типа ”мышь”.
Естественной формой общения человека с ПСИИ является язык, на котором говорит. В настоящее время одной из проблем ИИ является развитие систем понимания ЕЯ. Языки, с помощью которых пользователь может общаться с машиной, можно разделить на три класса: регламентированные, профессионально – ориентированные и естественные.
При регламентированном языке система сама выбирает вариант диалога и ведет его. Пример - ”меню” и анкетный язык. Преимущества такого способа общения – простота и надежность. Однако жестко запланированный и заложенный в память системы сценарий диалога не может предусмотреть все возможные варианты диалога.
Более совершенной формой общения пользователя с системой является общение на ограниченном ЕЯ. Лексика здесь ограничена предметной областью, к которой язык отнесен. Эта форма общения исключает различные формы одного и того же слова и пользователь не может выйти за рамки словарного запаса данной системы.
Естественно – языковые системы, которые обрабатывают произвольный набор текстов, в настоящее время в законченном виде не существуют. Говоря о ЕЯ-системах, имеют в виду системы, ориентированные все-таки на определенную предметную область, обладающие более развитыми, по сравнению с системами профессионально – ориентированными, возможностями восприятия языка и обеспечивающие больший комфорт пользователю.
3.5. Объяснение и обоснование решений в ПСИИ
Система обоснований (СО) функционально предназначена для формирования ответов на вопросы пользователя относительно поведения интеллектуальной системы (ИС) в процессе получения ею заключения или решения. Способность объяснять свои действия – одно из главных отличительных свойств ИС. Она повышает доверие пользователя к системе, к представляемым ею рекомендациями решениям. Кроме того, СО возможно использовать в процессе модификации и развития ИС, выявления противоречивых знаний, а также при обучении менее подготовленных пользователей.
Системы ИИ различных типов, ориентированные на разные проблемные области, должны иметь специфичные для них СО (некоторые системы могут вообще не иметь СО). Однако на практике все СО реализуются на одних и тех же принципах в основном двумя способами: фиксацией событий и состояний с помощью заготовленных текстов на естественном языке; трассировкой рассуждений, обратным развертыванием дерева целей с указанием подцелей. При реализации каждого из этих способов предварительно выделяются ситуации, факты и узлы перехода в новые состояния, требующие объяснений. Им ставится в соответствие некоторый текст объяснений.
При способе фиксации событий объяснения составляются из кратких текстов на естественном языке, которые хранятся вместе с правилами и фактами. Эти тексты предварительно помещаются в программу и инициируются в том случае, когда задан вопрос по соответствующей ситуации и необходимо их представление. Несмотря на некоторое преимущества, связанные с возможностью формирования удобных и простых для восприятия объяснений, этот способ имеет два важных ограничения, препятствующих широкому применению: объяснения должны исправляться каждый раз, когда меняется БЗ; объяснение может быть адаптировано к индивидуальному пользователю только с большим трудом. Кроме того, очень часто пользователя интересует именно ход рассуждения, цепочка логических выводов, приведших к заключению.
Способ трассировки рассуждений при объяснении предусматривает пересечение дерева целей для ответа на вопросы. СО может объяснять, как было получено заключение. Это достигается путем прохождения подцелей, которые были удовлетворены при движении к цели.
В последнее время получает распространение новый вид объяснения, называемый обоснованием выводов, которое, не учитывая способа комбинации выводов, дает описание системы путем выявления причин сделанных выводов. Одним из способов является проверка или оценка правильности и реализуемости на основе прогнозирования последствий и развития ситуаций в случае использования этих решений, а также выявление возможных узких мест. Во многих предметных областях, связанных с производственным процессом, основой для принятия управляющих решений и выработки обоснованных рекомендаций является оценка ситуаций, складывающихся во внешней среде, определение и прогнозирование ее наиболее важных свойств на основе интерпретации имеющихся данных.
Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций и при текущих данных. При обосновании решений и прогнозировании в этих системах часто используется либо имитационная, либо параметрическая динамическая модель, в которой значения параметров подгоняются под данную ситуацию. Выводимые из этой модели следствия составляют основу для прогноза.
Производственные системы ИИ с возможностями обоснования решений и прогнозирования на базе имитационного моделирования, прежде всего, необходимы при решении задач оперативно – диспетчерского управления производством, планирования, управления процессами в реальном времени.
4. Проектирование ПСИИ
4.1. Этапы проектирования и стадии существования ПСИИ
Проектирование производственных систем искусственного интеллекта – это итеративный и эволюционный процесс, в котором участвуют несколько специалистов: эксперт, обладающий знаниями о предметной области и желающий помочь работе по созданию системы, а также специалисты в области ИИ – инженеры знаний, аналитики и программисты. В зависимости от объема и трудоемкости работ группа может состоять из трех – шести человек.
При оценке проблемной области на этапе проектирования ПСИИ необходимо учитывать следующие факторы: легкость сбора данных, представимость данных, оправданность затрат на разработку ПСИИ, наличие экспертов, наличие необходимых ресурсов (ЭВМ, программистов, программного обеспечения и т.д.).
После анализа проблемной области и определения целесообразности внедрения интеллектуальной системы в этой сфере приступают к проектированию системы.