Реферат: Пространственно-временная метрика, уравнения геодезических. Ньютоново приближение
где— постоянная интегрирования.
Формула (1.2.2) приводит к следующему выражению, вывод которого содержится в Приложении В:
Умножая (1.2.2) векторно на, получаем
вследствие того чтоТаким образом,
где Н — постоянная, а h — постоянный единичный вектор. Из последнего уравнения следует, что геодезическая лежит в плоскости, перпендикулярной h, а угловой момент по отношению к собственному времени остается неизменным. Угловой момент постоянен только в координатах Шварцшильда. В произвольной метрике, для которой уравнение (1.2.6) имеет вид
правая часть которого не является постоянной, поскольку x— функция
При этих условиях (1.2.6) эквивалентно уравнению
и, следовательно, уравнение геодезической (1.2.5) в координатах Шварцшильда принимает вид
2.1 Уравнение энергии
Умножение уравнения (1.2.9) скалярно нас последующим интегрированием дает
где— постоянная интегрирования.
Это выражение можно также получить, исключаяиз (1-2.4) и (1.2.3), с условием, чтоЭто приводит к
Вследствие того что
и
левая часть (1.2.11) вдвое превышает левую часть (1.2.10) и, следователь!; о,
Считаяв точке, гдеиз (1.2.10) находим
где