Реферат: Процесс трансляции
Выполнила: студентка 206 группы
Мамрукова О.В.
Проверила: ст. преподаватель
Климова А.Д.
Красноярск
2010
Содержание
Введение
1. Генетический код: общие сведения
2. Белоксинтезирующая система
3. Этапы синтеза полипептидной цепи
4. Процессы трансляции
5. Регуляция биосинтеза белка на этапе трансляции
Заключение
Список литературы
Приложения
Введение
Живой организм характеризуется высшей степенью упорядоченности составляющих его ингредиентов и уникальной структурной организацией, обеспечивающей как его фенотипические признаки, так и многообразие биологических функций. В этом структурно-функциональном единстве организмов, составляющем сущность жизни, белки играют важнейшую роль, не заменяемую другими органическими соединениями.
Одной из задач современной биологии и ее новейших разделов – молекулярной биологии, биоорганической химии, физико-химической биологии – является расшифровка механизмов синтеза молекулы белка, содержащей сотни, а иногда и тысячи остатков аминокислот. Механизм синтеза должен обладать точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи Кодирующая система определяет первичную структуру, а вторичная и третичная структуры белковой молекулы определяются физико-химическими свойствами и химическим строением аминокислот.
В современные представления о механизме синтеза белка большой вклад внесли советские биохимики. Так, в лаборатории А. Е. Браунштейна было впервые указано на участие АТФ в синтезе квазипептидных связей. В. Н. Ореховичем еще 50-е годы было показано, что перенос аминоцильных или пептидильных группировок на NH2 группу аминокислот может осуществляться не только с амидной или пептидной, но и со сложноэфирной связи. Как будет показано ниже, именно этот механизм лежит в основе реакции транспептидирования в 50S рибосоме в стадии элонгации синтеза белка.
Значительный вклад в современные представления о месте, факторах и механизме синтеза белка внесли исследования Т. Касперсона, П. Берга, П. Замечника, С. Очоа, А. А. Баева, А. С. Спирина и др.
1. Генетический код: общие сведения
Перевод информации, заключенной в полинуклеотидной последовательности мРНК, в аминокислотную последовательность белка требует определенного способа кодирования или шифрования, т.е. существования определенного закона, по которому чередование четырех нуклеотидов в мРНК задаёт специфическую последовательность аминокислот в белке.
Необходимость кодирования структуры белков в линейной последовательности нуклеотидов мРНК и ДНК продиктована тем, что в ходе трансляции:
- нет соответствия между числом мономеров в матрице мРНК и продукте – синтезируемом белке;
- отсутствует структурное сходство между мономерами РНК и белка.
Это исключает комплементарное взаимодействие между матрицей и продуктом – принцип, по которому осуществляется построение новых молекул ДНК и РНК в ходе репликации и транскрипции.
Отсюда становиться ясным, что должен существовать "словарь", позволяющий выяснить, какая последовательность нуклеотидов мРНК обеспечивает включение в белок аминокислот в заданной последовательности. Этот "словарь" получил название генетического, биологического, нуклеотидного, или аминокислотного кода. Генетический код – основан на использовании алфавита, состоящего всего из четырех букв: A, G, T, C.
Но каким же образом передается информация от РНК, содержащей всего четыре нуклеотида, на белок, содержащий 20 различных аминокислот? Если бы каждый нуклеотид передавал информацию на синтез одной аминокислоты, то всего кодировалось бы 4 аминокислоты. Не может код состоять из двух нуклеотидов, так как в этом случае можно было бы охватить не более 16 аминокислот (42 =16). Работами М. Ниренберга и соавторов было установлено, что для кодирования одной аминокислоты требуется не менее трех последовательно расположенных нуклеотидов, называемых кодонами или триплетами. При этом между отдельными кодонами нет промежутков, и информация записана слитно, без знаков препинания. Число сочетаний 43 дает основание полагать, что 20 аминокислот кодируется 64 кодонами. Экспериментально доказано, что таких кодонов меньше, всего 61, а 3 остальных UAA, UAGи UGAне несут в себе информации и первоначально были названы бессмысленными, или нонсенс-кодонами. Однако в дальнейшем было показано, что эти триплеты сигнализируют о завершении трансляции, и поэтому их стали называть терминирующими, или стоп-кодонами.
Кодоны мРНК и триплеты нуклеотидов в кодирующей нити ДНК с направлением от 5¢ к 3¢ - концу имеют одинаковую последовательность азотистых оснований, за исключением того, что в ДНК вместо урацила, характерного для мРНК, стоит тимин.
Выявлена также интересная особенность взаимодействия кодона с антикодоном. Оказалось, что первое и второе азотистые основания кодона образуют более прочные связи с комплементарными основаниями антикодона. Что же касается третьего основания, то эта связь менее прочная, более того, основание кодона может спариваться с другим, не комплементарным основанием антикодона. Этот феномен называют механизмом неоднозначного соответствия или качания. В соответствии с этим урацил антикодона может взаимодействовать не только в аденином, но и гуанином кодона. Гуанин антикодона способен связываться не только с цитозином, но и с урацилом кодона. Это указывает на возможность нескольких кодонов кодировать одну и туже аминокислоту. И действительно было установлено, что ряд аминокислот кодируется двумя и более антикодонами (Приложение 1, табл. 1). Из таблицы видно, что только две аминокислоты - метионин и триптофан – кодируются при помощи одного кодона. Тот факт, что одной и той же аминокислоте соответствует несколько кодонов, называется вырожденностью генетического кода. Биологический смысл этого явления связан, по-видимому, с возможностью более быстрого отделения тРНК от мРНК, что очень важно для процесса белкового синтеза.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--